Description

在实现程序自己主动分析的过程中,经常须要判定一些约束条件能否被同一时候满足。

考虑一个约束满足问题的简化版本号:如果x1,x2,x3,…代表程序中出现的变量。给定n个形如xi=xj或xi≠xj的变量相等/不等的约束条件。请判定能否够分别为每个变量赋予恰当的值,使得上述全部约束条件同一时候被满足。比如,一个问题中的约束条件为:x1=x2,x2=x3,x3=x4,x1≠x4。这些约束条件显然是不可能同一时候被满足的。因此这个问题应判定为不可被满足。
如今给出一些约束满足问题,请分别对它们进行判定。

Input

输入文件的第1行包括1个正整数t,表示须要判定的问题个数。注意这些问题之间是相互独立的。

对于每一个问题,包括若干行:
第1行包括1个正整数n。表示该问题中须要被满足的约束条件个数。

接下来n行,每行包含3个整数i,j,e,描写叙述1个相等/不等的约束条件,相邻整数之间用单个空格隔开。

若e=1,则该约束条件为xi=xj。若e=0,则该约束条件为xi≠xj。

Output

输出文件包含t行。

输出文件的第k行输出一个字符串“YES”或者“NO”(不包括引號。字母所有大写)。“YES”表示输入中的第k个问题判定为能够被满足。“NO”表示不可被满足。

Sample Input

2

2

1 2 1

1 2 0

2

1 2 1

2 1 1

Sample Output

NO

YES

HINT

在第一个问题中,约束条件为:x1=x2,x1≠x2。这两个约束条件互相矛盾,因此不可被同一时候满足。

在第二个问题中。约束条件为:x1=x2,x2=x1。

这两个约束条件是等价的,能够被同一时候满足。

1≤n≤100000
1≤i,j≤1000000000
题解:非常显然能够用并查集来推断相等或不相等的关系。由于数值比較大而n比較小,所以离散一下就好了。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
struct use{
int v1,v2,p1,p2,kind;
}a[1000001];
bool ff;
int fa[1000001],t,n,x,y,k,tt,c[1000001],tot;
int find(int x)
{
if (x!=fa[x]) fa[x]=find(fa[x]);
return fa[x];
}
int main()
{
freopen("prog.in","r",stdin);
freopen("prog.out","w",stdout);
scanf("%d",&t);
while (t--)
{
memset(c,0,sizeof(c));
scanf("%d",&n);tt=0;ff=true;
for (int i=1;i<=2*n;i++) fa[i]=i;
for (int i=1;i<=n;i++)
{
scanf("%d%d%d",&x,&y,&k);
c[++tt]=x;c[++tt]=y;
a[i].v1=x;a[i].v2=y;a[i].kind=k;
}
sort(c+1,c+tt+1);
tot=unique(c+1,c+tt+1)-c-1;
for (int i=1;i<=n;i++)
{
int r1,r2;
a[i].p1=upper_bound(c+1,c+tot+1,a[i].v1)-c-1;
a[i].p2=upper_bound(c+1,c+tot+1,a[i].v2)-c-1;
r1=find(a[i].p1);r2=find(a[i].p2);
if (a[i].kind==1)
{
r1=find(a[i].p1);r2=find(a[i].p2);
if (r1!=r2) fa[r1]=r2;
}
}
for (int i=1;i<=n;i++)
{
int r1,r2;
if (a[i].kind==0)
{
r1=find(a[i].p1);r2=find(a[i].p2);
if (r1==r2){ff=false;break;}
}
}
if (ff) printf("YES\n");
else printf("NO\n");
}
}

【NOI2015】【程序自己主动分析】【并查集+离散化】的更多相关文章

  1. BZOJ 4195: [Noi2015]程序自动分析 并查集+离散化

    LUOGU 1955BZOJ 4195 题目描述 在实现程序自动分析的过程中,常常需要判定一些约束条件是否能被同时满足. 考虑一个约束满足问题的简化版本:假设x1,x2,x3...代表程序中出现的变量 ...

  2. BZOJ 4195: [Noi2015]程序自动分析 [并查集 离散化 | 种类并查集WA]

    题意: 给出若干相等和不等关系,判断是否可行 woc NOI考这么傻逼的题飞快打了一个种类并查集交上了然后爆零... 发现相等和不等看错了异或一下再叫woc90分 然后发现md$a \neq b, a ...

  3. NOI2015 洛谷P1955 程序自动分析(并查集+离散化)

    这可能是我目前做过的最简单的一道noi题目了...... 先对e=1的处理,用并查集:再对e=0查询,如果这两个在同一集合中,则为""NO",最后都满足的话输出" ...

  4. BZOJ-4195 NOI2015Day1T1 程序自动分析 并查集+离散化

    总的来说,这道题水的有点莫名奇妙,不过还好一次轻松A 4195: [Noi2015]程序自动分析 Time Limit: 10 Sec Memory Limit: 512 MB Submit: 836 ...

  5. [UOJ#131][BZOJ4199][NOI2015]品酒大会 后缀数组 + 并查集

    [UOJ#131][BZOJ4199][NOI2015]品酒大会 试题描述 一年一度的“幻影阁夏日品酒大会”隆重开幕了.大会包含品尝和趣味挑战两个环节,分别向优胜者颁发“首席品酒家”和“首席猎手”两个 ...

  6. 【并查集+离散化】BZOJ4195- [Noi2015]程序自动分析

    [题目大意] 在实现程序自动分析的过程中,常常需要判定一些约束条件是否能被同时满足. 考虑一个约束满足问题的简化版本:假设x1,x2,x3,…代表程序中出现的变量,给定n个形如xi=xj或xi≠xj的 ...

  7. 【BZOJ4199】[Noi2015]品酒大会 后缀数组+并查集

    [BZOJ4199][Noi2015]品酒大会 题面:http://www.lydsy.com/JudgeOnline/wttl/thread.php?tid=2144 题解:听说能用SAM?SA默默 ...

  8. [NOI2015] 品酒大会 - 后缀数组,并查集,STL,启发式合并

    [NOI2015] 品酒大会 Description 对于每一个 \(i \in [0,n)\) 求有多少对后缀满足 LCP 长度 \(\le i\) ,并求满足条件的两个后缀权值乘积的最大值. So ...

  9. BZOJ 4199: [Noi2015]品酒大会( 后缀数组 + 并查集 )

    求出后缀数组后, 对height排序, 从大到小来处理(r相似必定是0~r-1相似), 并查集维护. 复杂度O(NlogN + Nalpha(N)) ------------------------- ...

随机推荐

  1. 【Visual Studio】设置使用多字符集

  2. 键盘事件keydown、keypress、keyup

    事件触发顺序:keydown - > keypress - > keyup   中文输入法:   firfox:输入触发keydown,回车确认输入触发keyup chrome:输入触发k ...

  3. XPath语法 在C#中使用XPath例子与用法

    XPath可以快速定位到Xml中的节点或者属性.XPath语法很简单,但是强大够用,它也是使用xslt的基础知识.示例Xml: <?xml version="1.0" enc ...

  4. uva 1149:Bin Packing(贪心)

    题意:给定N物品的重量,背包容量M,一个背包最多放两个东西.问至少多少个背包. 思路:贪心,最大的和最小的放.如果这样都不行,那最大的一定孤独终生.否则,相伴而行. 代码: #include < ...

  5. springBoot 程序入口

    入口类要放在首个package 这样它能扫到所有的包 @SpringBootApplication @EnableScheduling public class App { public static ...

  6. 关于asp.netCore3.0区域和路由配置

    在ASP.NET Core 3.0中路由配置和2.0不一样了 一.MVC 服务注册 ASP.NET Core 3.0 添加了用于注册内部的 MVC 方案的新选项Startup.ConfigureSer ...

  7. Kali Linux 2017中Scapy运行bug解决

    Kali Linux 2017中Scapy运行bug解决   Scapy是一款强大的网络数据包构建工具.在Kali Linux 2017中,当在scapy的命令行中,运行res.graph()生成图形 ...

  8. bzoj 2889: Tree Conundrum

    2889: Tree Conundrum Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 61  Solved: 37[Submit][Status][ ...

  9. Weblogic多数据源(Multi Data Sources)应用实践

    原创 2012年03月29日 10:55:28 标签: weblogic / 数据库 / 负载均衡 / 数据中心 / jdbc / 应用服务器   大型系统在进行数据库部署时,常常会分为主数据应用中心 ...

  10. 在PythonAnyWhere上部署Django项目

    http://www.jianshu.com/p/91047e3a4ee9 将项目放到git上,然后将pathonanywhere上的ssh传到git上,没有的话先创建,然后从git上把项目拷贝到pa ...