摘要

   1.使用reduceByKey/aggregateByKey替代groupByKey

  2.使用mapPartitions替代普通map

  3.使用foreachPartitions替代foreach

  4.使用filter之后进行coalesce操作

  5.使用repartitionAndSortWithinPartitions替代repartition与sort类操作

  6.使用broadcast使各task共享同一Executor的集合替代算子函数中各task传送一份集合

  7.使用相同分区方式的join可以避免Shuffle

   8.map和flatMap选择

   9.cache和persist选择

   10.zipWithIndex和zipWithUniqueId选择

  

内容

1.使用reduceByKey/aggregateByKey替代groupByKey

reduceByKey/aggregateByKey底层使用combinerByKey实现,会在map端进行局部聚合;groupByKey不会

2.使用mapPartitions替代普通map

mapPartitions类的算子,一次函数调用会处理一个partition所有的数据,而不是一次函数调用处理一条,性能相对来说会高一些。但是有的时候,使用mapPartitions会出现OOM(内存溢出)的问题。因为单次函数调用就要处理掉一个partition所有的数据,如果内存不够,垃圾回收时是无法回收掉太多对象的,很可能出现OOM异常。所以使用这类操作时要慎重!

3.使用foreachPartitions替代foreach

原理类似于“使用mapPartitions替代map”,也是一次函数调用处理一个partition的所有数据,而不是一次函数调用处理一条数据。在实践中发现,foreachPartitions类的算子,对性能的提升还是很有帮助的。比如在foreach函数中,将RDD中所有数据写MySQL,那么如果是普通的foreach算子,就会一条数据一条数据地写,每次函数调用可能就会创建一个数据库连接,此时就势必会频繁地创建和销毁数据库连接,性能是非常低下;但是如果用foreachPartitions算子一次性处理一个partition的数据,那么对于每个partition,只要创建一个数据库连接即可,然后执行批量插入操作,此时性能是比较高的。实践中发现,对于1万条左右的数据量写MySQL,性能可以提升30%以上。

4.使用filter之后进行coalesce操作

通常对一个RDD执行filter算子过滤掉RDD中较多数据后(比如30%以上的数据),建议使用coalesce算子,手动减少RDD的partition数量,将RDD中的数据压缩到更少的partition中去。因为filter之后,RDD的每个partition中都会有很多数据被过滤掉,此时如果照常进行后续的计算,其实每个task处理的partition中的数据量并不是很多,有一点资源浪费,而且此时处理的task越多,可能速度反而越慢。因此用coalesce减少partition数量,将RDD中的数据压缩到更少的partition之后,只要使用更少的task即可处理完所有的partition。在某些场景下,对于性能的提升会有一定的帮助。

5.使用repartitionAndSortWithinPartitions替代repartition与sort类操作

repartitionAndSortWithinPartitions是Spark官网推荐的一个算子,官方建议,如果需要在repartition重分区之后,还要进行排序,建议直接使用repartitionAndSortWithinPartitions算子。因为该算子可以一边进行重分区的shuffle操作,一边进行排序。shuffle与sort两个操作同时进行,比先shuffle再sort来说,性能可能是要高的。

6.使用broadcast使各task共享同一Executor的集合替代算子函数中各task传送一份集合

在算子函数中使用到外部变量时,默认情况下,Spark会将该变量复制多个副本,通过网络传输到task中,此时每个task都有一个变量副本。如果变量本身比较大的话(比如100M,甚至1G),那么大量的变量副本在网络中传输的性能开销,以及在各个节点的Executor中占用过多内存导致的频繁GC,都会极大地影响性能。

因此对于上述情况,如果使用的外部变量比较大,建议使用Spark的广播功能,对该变量进行广播。广播后的变量,会保证每个Executor的内存中,只驻留一份变量副本,而Executor中的task执行时共享该Executor中的那份变量副本。这样的话,可以大大减少变量副本的数量,从而减少网络传输的性能开销,并减少对Executor内存的占用开销,降低GC的频率。

7.使用相同分区方式的join可以避免Shuffle

Spark知道当前面的转换已经根据相同的partitioner分区器分好区的时候如何避免shuffle。如果RDD有相同数目的分区,join操作不需要额外的shuffle操作。因为RDD是相同分区的,rdd1中任何一个分区的key集合都只能出现在rdd2中的单个分区中。因此rdd3中任何一个输出分区的内容仅仅依赖rdd1和rdd2中的单个分区,第三次shuffle就没有必要了。

rdd1 = someRdd.reduceByKey(...)
rdd2 = someOtherRdd.reduceByKey(...)
rdd3 = rdd1.join(rdd2)

那如果rdd1和rdd2使用不同的分区器,或者使用默认的hash分区器但配置不同的分区数呢?那样的话,仅仅只有一个rdd(较少分区的RDD)需要重新shuffle后再join。(参考自

8.map和flatMap选择

def map[U](f: (T) ⇒ U)(implicit arg0: ClassTag[U]): RDD[U] //Return a new RDD by applying a function to all elements of this RDD.

def flatMap[U](f: (T) ⇒ TraversableOnce[U])(implicit arg0: ClassTag[U]): RDD[U]  //Return a new RDD by first applying a function to all elements of this RDD, and then flattening the results.
前者的输入是一个单一数据,后者的输入数据是一个可迭代的集合。同样是执行某种映射函数,后者最终会把元素打平,即map的输入输出是一对一的,而flatMap的输出是一对多的

Spark算子选择策略的更多相关文章

  1. spark算子之DataFrame和DataSet

    前言 传统的RDD相对于mapreduce和storm提供了丰富强大的算子.在spark慢慢步入DataFrame到DataSet的今天,在算子的类型基本不变的情况下,这两个数据集提供了更为强大的的功 ...

  2. Spark:常用transformation及action,spark算子详解

    常用transformation及action介绍,spark算子详解 一.常用transformation介绍 1.1 transformation操作实例 二.常用action介绍 2.1 act ...

  3. ${mapred.local.dir}选择策略--Map Task存放中间结果

    上篇说了block在DataNode配置有多个${dfs.data.dir}时的存储策略,本文主要介绍TaskTracker在配置有多个${mapred.local.dir}时的选择策略. mapre ...

  4. HDFS读写数据块--${dfs.data.dir}选择策略

    最近工作需要,看了HDFS读写数据块这部分.不过可能跟网上大部分帖子不一样,本文主要写了${dfs.data.dir}的选择策略,也就是block在DataNode上的放置策略.我主要是从我们工作需要 ...

  5. (转)Spark 算子系列文章

    http://lxw1234.com/archives/2015/07/363.htm Spark算子:RDD基本转换操作(1)–map.flagMap.distinct Spark算子:RDD创建操 ...

  6. [原创].NET 业务框架开发实战之八 业务层Mapping的选择策略

    原文:[原创].NET 业务框架开发实战之八 业务层Mapping的选择策略 .NET 业务框架开发实战之八 业务层Mapping的选择策略 前言:在上一篇文章中提到了mapping,感觉很像在重新实 ...

  7. Spark算子总结及案例

    spark算子大致上可分三大类算子: 1.Value数据类型的Transformation算子,这种变换不触发提交作业,针对处理的数据项是Value型的数据. 2.Key-Value数据类型的Tran ...

  8. UserView--第二种方式(避免第一种方式Set饱和),基于Spark算子的java代码实现

      UserView--第二种方式(避免第一种方式Set饱和),基于Spark算子的java代码实现   测试数据 java代码 package com.hzf.spark.study; import ...

  9. UserView--第一种方式set去重,基于Spark算子的java代码实现

    UserView--第一种方式set去重,基于Spark算子的java代码实现 测试数据 java代码 package com.hzf.spark.study; import java.util.Ha ...

随机推荐

  1. Centos7中安装Mysql及配置

    CentOS 7 安装 MySQL 首先检查 MySQL 是否已安装 yum list installed | grep mysql 如果有的话 就全部卸载 yum -y remove +数据库名称 ...

  2. CSS预处器的对比——Sass、Less和Stylus

    预处器的对比--Sass.LESS和Stylus 转载: 英文原文:http://net.tutsplus.com/tutorials/html-css-techniques/sass-vs-less ...

  3. dedecms 文章页图片改为绝对路径

    这几天在网站改版,想把网站做大,想做频道页二级域名,于是在做网站的过程中发现一个问题,dedecms开设二级域名后,在二级域名的文章页无法显示图片,查看源代码后发现问题,由于dedecms文章页中的图 ...

  4. [NOIP2016]愤怒的小鸟 D2 T3 状压DP

    [NOIP2016]愤怒的小鸟 D2 T3 Description Kiana最近沉迷于一款神奇的游戏无法自拔. 简单来说,这款游戏是在一个平面上进行的. 有一架弹弓位于(0,0)处,每次Kiana可 ...

  5. linux中shell变量$#,$@,$0,$1,$2的含义解释

    linux中shell变量$#,$@,$0,$1,$2的含义解释: 变量说明: $$ Shell本身的PID(ProcessID) $! Shell最后运行的后台Process的PID $? 最后运行 ...

  6. 关于在header里增加参数的方式

    在使用一个API的时候,文档里写的返回值类型是json,可是试了下返回的明明是xml,还小小的鄙视了一把. 可是解析xml,好麻烦的.最好是json可以直接decode . 意外看到文档下面有一句 J ...

  7. Linux基础命令-有关于目录的命令

    1. 查看帮助: [root@oracle ~]# man cd //查看 cd 指令的帮助文档 2. 显示当前工作目录: [root@oracle ~]# pwd/root 3. 列出当前目录下的内 ...

  8. AMD与CMD(转载)

    JavaSript模块化   在了解AMD,CMD规范前,还是需要先来简单地了解下什么是模块化,模块化开发?       模块化是指在解决某一个复杂问题或者一系列的杂糅问题时,依照一种分类的思维把问题 ...

  9. eclipse常见问题

    使用eclipse进入断点,当弹出"Confir Perspective Switch"视图时,选择"Yes".之后每次进入断点都会自动切换到debug视图. ...

  10. golang 裸写一个pool池控制协程的大小

    这几天深入的研究了一下golang 的协程,读了一个好文 http://mp.weixin.qq.com/s?__biz=MjM5OTcxMzE0MQ==&mid=2653369770& ...