最近在写一个多线程中控制输出顺序的系统中的一个代码,使用了map的数据结构。具体的业务是需要一个单例的对象,然后需要在多线程的环境下实现添加和删除的操作。部分代码如下:

public class UploadImageNumCache {

    /**
* private Map<Integer, Map<Integer, Integer>> UploadImageNumMap = Collections
.synchronizedMap(new HashMap<Integer, Map<Integer, Integer>>());
*/
private Map<Integer, Map<Integer, Integer>> UploadImageNumMap = new ConcurrentHashMap<Integer, Map<Integer,Integer>>(); /**
*
*/
private static UploadImageNumCache uploadImageNumCache = null; /**
* 私有构造
*/
private UploadImageNumCache() { } /**
* 添加
*
* @param documentId
* 文档id
* @param pageNow
* 页码
*/
public synchronized void addUploadImageNumMap(Integer documentId, Integer pageNow) { if (UploadImageNumMap.containsKey(documentId)) {
UploadImageNumMap.get(documentId).put(pageNow, Constants.IMAGE_UPLOAD_STATUS_NO);
} else {
Map<Integer, Integer> map = new HashMap<Integer, Integer>();
map.put(pageNow, Constants.IMAGE_UPLOAD_STATUS_NO);
UploadImageNumMap.put(documentId, map);
}
}
/**
* 删除
*
* @param documentId
*/
public synchronized void deleteUploadImageNumMap(Integer documentId) {
if (UploadImageNumMap.containsKey(documentId)) {
UploadImageNumMap.remove(documentId);
}
}
/**
* 清除缓存
*/
public synchronized void clearUploadImageNumMap() {
if (!UploadImageNumMap.isEmpty()) {
UploadImageNumMap.clear();
}
} /**
* 获取单例
*
* @return
*/
public static UploadImageNumCache getInstance() {
if (uploadImageNumCache == null) {
synchronized (UploadImageNumCache.class) {
if (uploadImageNumCache == null) {
uploadImageNumCache = new UploadImageNumCache();
}
}
}
return uploadImageNumCache;
}

从上面的代码中可以看到使用了map的数据结构来存放。但是在这里是修改过的代码。之前直接使用了hashmap。但是遇到一个很严重的问题就是多线程环境下的线程安全问题。我们都知道map,hashmap不是线程安全的。记得之前的面试的时候问过list如何实现线程安全,当时没有答上来,出来后就百度了以下,知道是使用的Collections .synchronizedList。但是写map的时候竟然没有想起来。
实在是惭愧阿。今天就对这些涉及到的集合中的线程安全问题进行一个总结,多总结多进步阿。

首先说以下 java中集合的两种分类。底层来说的话分两类collection和map:

Collection
├List
│├LinkedList
│├ArrayList
│└Vector
│ └Stack
└Set
Map
├Hashtable
├HashMap
└WeakHashMap。这个图比较详细的说明了。

我们说集合中有些是线程安全的有例如:Vector,HashTable等。这些类之所以是线程安全的是因为,这些类是在jdk1.5之前,甚至是1.2版本的,我们看这些类的源码就可以知道里面都有sychronized这个线程安全关键字。但是之后出的ArrayList,HashMap等,一般都是线程不安全的。也不知道是基于什么考虑的,这个有时间可以研究以下。今天主要对hashmap和list的线程安全实现做一个介绍,至于hashtable这个线程安全和hashmap的区别不是今天要说的内容。

好了既然我们知道map,hashmap不是线程安全的,但是如何证明呢,下面的这个程序大家可以自己试一下,看看能不能将到5000 正确的输出来。:

/**
*
* @author duanxj
*
* @version
*
* @date May 8, 2017
*/
public class ThreadNotSafeHashmap {
public static void main(String args[]) throws InterruptedException {
final HashMap<String, String> firstHashMap = new HashMap<String, String>();
Thread t1 = new Thread() {
public void run() {
for (int i = 0; i < 2500; i++) {
firstHashMap.put(String.valueOf(i), String.valueOf(i));
}
}
};
Thread t2 = new Thread() {
public void run() {
for (int j = 2500; j < 5000; j++) {
firstHashMap.put(String.valueOf(j), String.valueOf(j));
}
}
};
t1.start();
t2.start(); Thread.sleep(1000);
for (int k = 0; k < 5000; k++) {
if (String.valueOf(k).equals(firstHashMap.get(String.valueOf(k)))) {
System.err.println(String.valueOf(k) + ":" + firstHashMap.get(String.valueOf(k)));
}
}
}
}

而且你要多试几次,你会发现每次跟每次少的元素都不一样。这下明白为什么不是线程安全的了吧。下面说到这里未还想说以下,有些人说多线程对hashmap进行添加和删除的时候会抛出异常。这种说法是不准确的,虽然我们知道在对list进行遍历的时候不能对list做删除操作,会抛出异常,但是在map中并不会抛出同样的异常。至于为什么大家百度以下。

上面是一个证明map线程不安全的例子,既然是线程不安全的,那总得知道为什么把:

总说HashMap是线程不安全的,不安全的,不安全的,那么到底为什么它是线程不安全的呢?要回答这个问题就要先来简单了解一下HashMap源码中的使用的存储结构(这里引用的是Java 8的源码,与7是不一样的)和它的扩容机制

HashMap的内部存储结构

下面是HashMap使用的存储结构:

1
2
3
4
5
6
7
8
transient Node<K,V>[] table;
 
static class Node<K,V> implements Map.Entry<K,V> {
        final int hash;
        final K key;
        V value;
        Node<K,V> next;
}

可以看到HashMap内部存储使用了一个Node数组(默认大小是16),而Node类包含一个类型为Node的next的变量,也就是相当于一个链表,所有hash值相同(即产生了冲突)的key会存储到同一个链表里,这是他底层的存储结构,那从这个结构中我们分析为什么是线程不安全的呢?

个人觉得HashMap在并发时可能出现的问题主要是两方面,首先如果多个线程同时使用put方法添加元素,而且假设正好存在两个put的key发 生了碰撞(hash值一样),那么根据HashMap的实现,这两个key会添加到数组的同一个位置,这样最终就会发生其中一个线程的put的数据被覆 盖。第二就是如果多个线程同时检测到元素个数超过数组大小*loadFactor,这样就会发生多个线程同时对Node数组进行扩容,都在重新计算元素位 置以及复制数据,但是最终只有一个线程扩容后的数组会赋给table,也就是说其他线程的都会丢失,并且各自线程put的数据也丢失。
关于HashMap线程不安全这一点,《Java并发编程的艺术》一书中是这样说的:

HashMap在并发执行put操作时会引起死循环,导致CPU利用率接近100%。因为多线程会导致HashMap的Node链表形成环形数据结构,一旦形成环形数据结构,Node的next节点永远不为空,就会在获取Node时产生死循环。

哇塞,听上去si不si好神奇,居然会产生死循环。。。。google了一下,才知道死循环并不是发生在put操作时,而是发生在扩容时。详细的解释可以看下面几篇博客:

既然知道了为什么,那就要去解决,如何解决呢,到目前为止有下面三种解决方法:

  • Hashtable   ConcurrentHashMap   Synchronized Map
  • 下面按照这个顺序对每一个进行说明。顺便说一下他们的效率问题:
  • 例子:

  • //Hashtable
    Map<String, String> hashtable = new Hashtable<>(); //synchronizedMap
    Map<String, String> synchronizedHashMap = Collections.synchronizedMap(new HashMap<String, String>()); //ConcurrentHashMap
    Map<String, String> concurrentHashMap = new ConcurrentHashMap<>();
     

    依次来看看。

    Hashtable

    先稍微吐槽一下,为啥命名不是HashTable啊,看着好难受,不管了就装作它叫HashTable吧。这货已经不常用了,就简单说说吧。HashTable源码中是使用synchronized来保证线程安全的,比如下面的get方法和put方法:

    1
    2
    3
    4
    5
    6
    public synchronized V get(Object key) {
    // 省略实现
    }
    public synchronized V put(K key, V value) {
    // 省略实现
    }

    所以当一个线程访问HashTable的同步方法时,其他线程如果也要访问同步方法,会被阻塞住。举个例子,当一个线程使用put方法时,另一个线程不但不可以使用put方法,连get方法都不可以,好霸道啊!!!so~~,效率很低,现在基本不会选择它了。

    ConcurrentHashMap

    ConcurrentHashMap(以下简称CHM)是JUC包中的一个类,Spring的源码中有很多使用CHM的地方。之前已经翻译过一篇关于ConcurrentHashMap的博客,如何在java中使用ConcurrentHashMap
    里面介绍了CHM在Java中的实现,CHM的一些重要特性和什么情况下应该使用CHM。需要注意的是,上面博客是基于Java
    7的,和8有区别,在8中CHM摒弃了Segment(锁段)的概念,而是启用了一种全新的方式实现,利用CAS算法,有时间会重新总结一下。

    SynchronizedMap

    看了一下源码,SynchronizedMap的实现还是很简单的。

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    // synchronizedMap方法
    public static <K,V> Map<K,V> synchronizedMap(Map<K,V> m) {
    return new SynchronizedMap<>(m);
    }
    // SynchronizedMap类
    private static class SynchronizedMap<K,V>
    implements Map<K,V>, Serializable {
    private static final long serialVersionUID = 1978198479659022715L; private final Map<K,V> m; // Backing Map
    final Object mutex; // Object on which to synchronize SynchronizedMap(Map<K,V> m) {
    this.m = Objects.requireNonNull(m);
    mutex = this;
    } SynchronizedMap(Map<K,V> m, Object mutex) {
    this.m = m;
    this.mutex = mutex;
    } public int size() {
    synchronized (mutex) {return m.size();}
    }
    public boolean isEmpty() {
    synchronized (mutex) {return m.isEmpty();}
    }
    public boolean containsKey(Object key) {
    synchronized (mutex) {return m.containsKey(key);}
    }
    public boolean containsValue(Object value) {
    synchronized (mutex) {return m.containsValue(value);}
    }
    public V get(Object key) {
    synchronized (mutex) {return m.get(key);}
    } public V put(K key, V value) {
    synchronized (mutex) {return m.put(key, value);}
    }
    public V remove(Object key) {
    synchronized (mutex) {return m.remove(key);}
    }
    // 省略其他方法
    }

    从源码中可以看出调用synchronizedMap()方法后会返回一个SynchronizedMap类的对象,而在SynchronizedMap类中使用了synchronized同步关键字来保证对Map的操作是线程安全的。

    性能对比

    这是要靠数据说话的时代,所以不能只靠嘴说CHM快,它就快了。写个测试用例,实际的比较一下这三种方式的效率(源码来源),下面的代码分别通过三种方式创建Map对象,使用ExecutorService来并发运行5个线程,每个线程添加/获取500K个元素。

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    55
    56
    57
    58
    59
    60
    61
    62
    63
    64
    65
    66
    public class CrunchifyConcurrentHashMapVsSynchronizedMap {
    
        public final static int THREAD_POOL_SIZE = 5;
    
        public static Map<String, Integer> crunchifyHashTableObject = null;
    public static Map<String, Integer> crunchifySynchronizedMapObject = null;
    public static Map<String, Integer> crunchifyConcurrentHashMapObject = null; public static void main(String[] args) throws InterruptedException { // Test with Hashtable Object
    crunchifyHashTableObject = new Hashtable<>();
    crunchifyPerformTest(crunchifyHashTableObject); // Test with synchronizedMap Object
    crunchifySynchronizedMapObject = Collections.synchronizedMap(new HashMap<String, Integer>());
    crunchifyPerformTest(crunchifySynchronizedMapObject); // Test with ConcurrentHashMap Object
    crunchifyConcurrentHashMapObject = new ConcurrentHashMap<>();
    crunchifyPerformTest(crunchifyConcurrentHashMapObject); } public static void crunchifyPerformTest(final Map<String, Integer> crunchifyThreads) throws InterruptedException { System.out.println("Test started for: " + crunchifyThreads.getClass());
    long averageTime = 0;
    for (int i = 0; i < 5; i++) { long startTime = System.nanoTime();
    ExecutorService crunchifyExServer = Executors.newFixedThreadPool(THREAD_POOL_SIZE); for (int j = 0; j < THREAD_POOL_SIZE; j++) {
    crunchifyExServer.execute(new Runnable() {
    @SuppressWarnings("unused")
    @Override
    public void run() { for (int i = 0; i < 500000; i++) {
    Integer crunchifyRandomNumber = (int) Math.ceil(Math.random() * 550000); // Retrieve value. We are not using it anywhere
    Integer crunchifyValue = crunchifyThreads.get(String.valueOf(crunchifyRandomNumber)); // Put value
    crunchifyThreads.put(String.valueOf(crunchifyRandomNumber), crunchifyRandomNumber);
    }
    }
    });
    } // Make sure executor stops
    crunchifyExServer.shutdown(); // Blocks until all tasks have completed execution after a shutdown request
    crunchifyExServer.awaitTermination(Long.MAX_VALUE, TimeUnit.DAYS); long entTime = System.nanoTime();
    long totalTime = (entTime - startTime) / 1000000L;
    averageTime += totalTime;
    System.out.println("2500K entried added/retrieved in " + totalTime + " ms");
    }
    System.out.println("For " + crunchifyThreads.getClass() + " the average time is " + averageTime / 5 + " ms\n");
    }
    }

    测试结果:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    Test started for: class java.util.Hashtable
    2500K entried added/retrieved in 2018 ms
    2500K entried added/retrieved in 1746 ms
    2500K entried added/retrieved in 1806 ms
    2500K entried added/retrieved in 1801 ms
    2500K entried added/retrieved in 1804 ms
    For class java.util.Hashtable the average time is 1835 ms Test started for: class java.util.Collections$SynchronizedMap
    2500K entried added/retrieved in 3041 ms
    2500K entried added/retrieved in 1690 ms
    2500K entried added/retrieved in 1740 ms
    2500K entried added/retrieved in 1649 ms
    2500K entried added/retrieved in 1696 ms
    For class java.util.Collections$SynchronizedMap the average time is 1963 ms Test started for: class java.util.concurrent.ConcurrentHashMap
    2500K entried added/retrieved in 738 ms
    2500K entried added/retrieved in 696 ms
    2500K entried added/retrieved in 548 ms
    2500K entried added/retrieved in 1447 ms
    2500K entried added/retrieved in 531 ms
    For class java.util.concurrent.ConcurrentHashMap the average time is 792 ms

    这个就不用废话了,CHM性能是明显优于Hashtable和SynchronizedMap的,CHM花费的时间比前两个的一半还少.

  • 哈哈哈  上面的分析是参考的这个兄弟的。www.importnew.com/21396.html 觉着写的很好,权当未参考参考。通过上面的分析我们看到其实建议使用

    ConcurrentHashMap来实现map的线程安全问题。

  • 对于list如何显示线程安全,其实使用的也是collections包中的Collections.synchronizedList(new ArrayList<Map<String,Object>>());

例子:

1
2
3
4
5
6
7
8
//Hashtable
Map<String, String> hashtable = new Hashtable<>();
 
//synchronizedMap
Map<String, String> synchronizedHashMap = Collections.synchronizedMap(new HashMap<String, String>());
 
//ConcurrentHashMap
Map<String, String> concurrentHashMap = new ConcurrentHashMap<>();

依次来看看。

Hashtable

先稍微吐槽一下,为啥命名不是HashTable啊,看着好难受,不管了就装作它叫HashTable吧。这货已经不常用了,就简单说说吧。HashTable源码中是使用synchronized来保证线程安全的,比如下面的get方法和put方法:

1
2
3
4
5
6
public synchronized V get(Object key) {
       // 省略实现
    }
public synchronized V put(K key, V value) {
    // 省略实现
    }

所以当一个线程访问HashTable的同步方法时,其他线程如果也要访问同步方法,会被阻塞住。举个例子,当一个线程使用put方法时,另一个线程不但不可以使用put方法,连get方法都不可以,好霸道啊!!!so~~,效率很低,现在基本不会选择它了。

ConcurrentHashMap

ConcurrentHashMap(以下简称CHM)是JUC包中的一个类,Spring的源码中有很多使用CHM的地方。之前已经翻译过一篇关于ConcurrentHashMap的博客,如何在java中使用ConcurrentHashMap
里面介绍了CHM在Java中的实现,CHM的一些重要特性和什么情况下应该使用CHM。需要注意的是,上面博客是基于Java
7的,和8有区别,在8中CHM摒弃了Segment(锁段)的概念,而是启用了一种全新的方式实现,利用CAS算法,有时间会重新总结一下。

SynchronizedMap

看了一下源码,SynchronizedMap的实现还是很简单的。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
// synchronizedMap方法
public static <K,V> Map<K,V> synchronizedMap(Map<K,V> m) {
       return new SynchronizedMap<>(m);
   }
// SynchronizedMap类
private static class SynchronizedMap<K,V>
       implements Map<K,V>, Serializable {
       private static final long serialVersionUID = 1978198479659022715L;
 
       private final Map<K,V> m;     // Backing Map
       final Object      mutex;        // Object on which to synchronize
 
       SynchronizedMap(Map<K,V> m) {
           this.m = Objects.requireNonNull(m);
           mutex = this;
       }
 
       SynchronizedMap(Map<K,V> m, Object mutex) {
           this.m = m;
           this.mutex = mutex;
       }
 
       public int size() {
           synchronized (mutex) {return m.size();}
       }
       public boolean isEmpty() {
           synchronized (mutex) {return m.isEmpty();}
       }
       public boolean containsKey(Object key) {
           synchronized (mutex) {return m.containsKey(key);}
       }
       public boolean containsValue(Object value) {
           synchronized (mutex) {return m.containsValue(value);}
       }
       public V get(Object key) {
           synchronized (mutex) {return m.get(key);}
       }
 
       public V put(K key, V value) {
           synchronized (mutex) {return m.put(key, value);}
       }
       public V remove(Object key) {
           synchronized (mutex) {return m.remove(key);}
       }
       // 省略其他方法
   }

从源码中可以看出调用synchronizedMap()方法后会返回一个SynchronizedMap类的对象,而在SynchronizedMap类中使用了synchronized同步关键字来保证对Map的操作是线程安全的。

性能对比

这是要靠数据说话的时代,所以不能只靠嘴说CHM快,它就快了。写个测试用例,实际的比较一下这三种方式的效率(源码来源),下面的代码分别通过三种方式创建Map对象,使用ExecutorService来并发运行5个线程,每个线程添加/获取500K个元素。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
public class CrunchifyConcurrentHashMapVsSynchronizedMap {
 
    public final static int THREAD_POOL_SIZE = 5;
 
    public static Map<String, Integer> crunchifyHashTableObject = null;
    public static Map<String, Integer> crunchifySynchronizedMapObject = null;
    public static Map<String, Integer> crunchifyConcurrentHashMapObject = null;
 
    public static void main(String[] args) throws InterruptedException {
 
        // Test with Hashtable Object
        crunchifyHashTableObject = new Hashtable<>();
        crunchifyPerformTest(crunchifyHashTableObject);
 
        // Test with synchronizedMap Object
        crunchifySynchronizedMapObject = Collections.synchronizedMap(new HashMap<String, Integer>());
        crunchifyPerformTest(crunchifySynchronizedMapObject);
 
        // Test with ConcurrentHashMap Object
        crunchifyConcurrentHashMapObject = new ConcurrentHashMap<>();
        crunchifyPerformTest(crunchifyConcurrentHashMapObject);
 
    }
 
    public static void crunchifyPerformTest(final Map<String, Integer> crunchifyThreads) throws InterruptedException {
 
        System.out.println("Test started for: " + crunchifyThreads.getClass());
        long averageTime = 0;
        for (int i = 0; i < 5; i++) {
 
            long startTime = System.nanoTime();
            ExecutorService crunchifyExServer = Executors.newFixedThreadPool(THREAD_POOL_SIZE);
 
            for (int j = 0; j < THREAD_POOL_SIZE; j++) {
                crunchifyExServer.execute(new Runnable() {
                    @SuppressWarnings("unused")
                    @Override
                    public void run() {
 
                        for (int i = 0; i < 500000; i++) {
                            Integer crunchifyRandomNumber = (int) Math.ceil(Math.random() * 550000);
 
                            // Retrieve value. We are not using it anywhere
                            Integer crunchifyValue = crunchifyThreads.get(String.valueOf(crunchifyRandomNumber));
 
                            // Put value
                            crunchifyThreads.put(String.valueOf(crunchifyRandomNumber), crunchifyRandomNumber);
                        }
                    }
                });
            }
 
            // Make sure executor stops
            crunchifyExServer.shutdown();
 
            // Blocks until all tasks have completed execution after a shutdown request
            crunchifyExServer.awaitTermination(Long.MAX_VALUE, TimeUnit.DAYS);
 
            long entTime = System.nanoTime();
            long totalTime = (entTime - startTime) / 1000000L;
            averageTime += totalTime;
            System.out.println("2500K entried added/retrieved in " + totalTime + " ms");
        }
        System.out.println("For " + crunchifyThreads.getClass() + " the average time is " + averageTime / 5 + " ms\n");
    }
}

测试结果:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
Test started for: class java.util.Hashtable
2500K entried added/retrieved in 2018 ms
2500K entried added/retrieved in 1746 ms
2500K entried added/retrieved in 1806 ms
2500K entried added/retrieved in 1801 ms
2500K entried added/retrieved in 1804 ms
For class java.util.Hashtable the average time is 1835 ms
 
Test started for: class java.util.Collections$SynchronizedMap
2500K entried added/retrieved in 3041 ms
2500K entried added/retrieved in 1690 ms
2500K entried added/retrieved in 1740 ms
2500K entried added/retrieved in 1649 ms
2500K entried added/retrieved in 1696 ms
For class java.util.Collections$SynchronizedMap the average time is 1963 ms
 
Test started for: class java.util.concurrent.ConcurrentHashMap
2500K entried added/retrieved in 738 ms
2500K entried added/retrieved in 696 ms
2500K entried added/retrieved in 548 ms
2500K entried added/retrieved in 1447 ms
2500K entried added/retrieved in 531 ms
For class java.util.concurrent.ConcurrentHashMap the average time is 792 ms

这个就不用废话了,CHM性能是明显优于Hashtable和SynchronizedMap的,CHM花费的时间比前两个的一半还少

有关如何线程安全的使用map(hashMap)的更多相关文章

  1. Collections+Iterator 接口 | Map+HashMap+HashTable+TreeMap |

    Collections+Iterator 接口 1. Collections 是一个操作 Set.List 和 Map 等集合的工具类 Collections 中提供了大量方法对集合元素进行排序.查询 ...

  2. Map HashMap 排序 迭代循环 修改值

    HashMap dgzhMap = Dict.getDict("dgzh"); Iterator it_d = dgzhMap.entrySet().iterator(); whi ...

  3. 高并发第九弹:逃不掉的Map --> HashMap,TreeMap,ConcurrentHashMap

    平时大家都会经常使用到 Map,面试的时候又经常会遇到问Map的,其中主要就是 ConcurrentHashMap,在说ConcurrentHashMap.我们还是先看一下, 其他两个基础的 Map ...

  4. Map随笔:最常用的Map——HashMap

    目录 Map随笔:最常用的Map--HashMap 前言: 1,HashMap的结构 2,HashMap的一些属性(JDK8) 3,HashMap的构造函数(JDK8) 4,HashMap的一些方法( ...

  5. ES6 & Map & hashMap

    ES6 & Map & hashMap 01 two-sum https://leetcode.com/submissions/detail/141732589/ hashMap ht ...

  6. Java集合 之Map(HashMap、Hashtable 、TreeMap、WeakHashMap )理解(new)

    HashMap 说明: 在详细介绍HashMap的代码之前,我们需要了解:HashMap就是一个散列表,它是通过“拉链法”解决哈希冲突的.还需要再补充说明的一点是影响HashMap性能的有两个参数:初 ...

  7. [Java] Map / HashMap - 源代码学习笔记

    Map 1. 用于关联 key 和 value 的对象,其中 key 与 key 之间不能重复. 2. 是一个接口,用来代替 Java 早期版本中的 Dictionary 抽象类. 3. 提供三种不同 ...

  8. Map / HashMap 获取Key值的方法

    方法1:keySet()HashMap hashmp = ne HashMap();hashmp.put("aa", "111");Set set = hash ...

  9. Map:HashMap和TreeMap

    一.Map集合     特点:将键映射到值得对象 Map集合和Collection集合的区别? Collection:是单列集合,存储的是单独出现的元素    Map: 是双列集合,存储的是键值对形式 ...

随机推荐

  1. (利用DOM)在新打开的页面点击关闭当前浏览器窗口

    1.在开发过程中我们前端的用户体验中有时候会要求点击一个按钮,关闭当前浏览器窗口,用HTML DOM就可做到 2.注意:本次写法要求在新窗口中关闭.target="_blank" ...

  2. C++字符串操作二

    #include <iostream> #include <assert.h> using namespace std; //模拟实现strcmp函数. bool my_str ...

  3. 再过半小时,你就能明白kafka的工作原理了

    本文在个人技术博客不同步发布,详情可猛戳 亦可扫描屏幕右侧二维码关注个人公众号,公众号内有个人联系方式,等你来撩... 为什么需要消息队列 周末无聊刷着手机,某宝网APP突然蹦出来一条消息" ...

  4. linux 查找最后几条数据

    tail(选项)(参数) -n<N>或——line=<N>:输出文件的尾部N(N位数字)行内容. 例如:grep 查询 2018-02-*/*.log |tail -n 5查询 ...

  5. Python之Numpy库常用函数大全(含注释)

    前言:最近学习Python,才发现原来python里的各种库才是大头! 于是乎找了学习资料对Numpy库常用的函数进行总结,并带了注释.在这里分享给大家,对于库的学习,还是用到时候再查,没必要死记硬背 ...

  6. 两个经典的文件IO程序示例

    前言 本文分析两个经典的C++文件IO程序,提炼出其中文件IO的基本套路,留待日后查阅. 程序功能 程序一打印用户指定的所有文本文件,程序二向用户指定的所有文本文件中写入数据. 程序一代码及其注释 # ...

  7. oracle 控制文件多路复用

    网上有很多关于控制文件的操作,我大概看了下.有很多都是炒来炒去转来转去.下面以自己理解和操作为例来对oracle的控制文件进行下介绍. 首先介绍下控制文件 在oralce数据库中,控制文件是一个很小的 ...

  8. iOS8需要兼容的内容

    本文转载至  http://blog.csdn.net/liuwuguigui/article/details/39494435 1.iPad上使用presentModalViewController ...

  9. 九度OJ 1105:字符串的反码 (翻译)

    时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:4929 解决:1529 题目描述: 一个二进制数,将其每一位取反,称之为这个数的反码.下面我们定义一个字符的反码.如果这是一个小写字符,则它 ...

  10. selenium2 浏览器版本问题

    一.chrome浏览器 chrome浏览器与驱动版本对应关系 ----------ChromeDriver v2.26 (2016-12-09)---------- Supports Chrome v ...