题目链接:http://poj.org/problem?id=3904

Sky Code
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 2968   Accepted: 998

Description

Stancu likes space travels but he is a poor software developer and will never be able to buy his own spacecraft. That is why he is preparing to steal the spacecraft of Petru. There is only one problem – Petru has locked the spacecraft with a sophisticated cryptosystem based on the ID numbers of the stars from the Milky Way Galaxy. For breaking the system Stancu has to check each subset of four stars such that the only common divisor of their numbers is 1. Nasty, isn’t it? Fortunately, Stancu has succeeded to limit the number of the interesting stars to N but, any way, the possible subsets of four stars can be too many. Help him to find their number and to decide if there is a chance to break the system.

Input

In the input file several test cases are given. For each test case on the first line the number N of interesting stars is given (1 ≤ N ≤ 10000). The second line of the test case contains the list of ID numbers of the interesting stars, separated by spaces. Each ID is a positive integer which is no greater than 10000. The input data terminate with the end of file.

Output

For each test case the program should print one line with the number of subsets with the asked property.

Sample Input

4
2 3 4 5
4
2 4 6 8
7
2 3 4 5 7 6 8

Sample Output

1
0
34

Source

题意:

给出n个数, 随便挑4个, 使得这四个数的最大公约数为1, 问有多少种组合?

题解:

思路:先用容斥原理计算出四个数的最大公约数>=1的组合数, 然后再用总数C(n,4)减之。

1.将每个数进行分解质因数, 然后再根据这些质因数组合出不同的因子,并记录这个因子出现的次数以及由多少个质因数构成。

2.容斥原理:比如因子2的个数为a,则四个数公约数为2的个数 为C(a,4),因子3的个数为b,则四个数公约数为3的个数为C(b,4),因子6(2*3)的个 数为c,则四个数公约数的个数为C(c,4)。 但是公约数为2的情况中或者公约数为3的情况中可能包括公约数为6的情况,相当于几个集合求并集,这就需要容斥定理来做。

3.如果这个因子出现的次数>=4, 则表明这个因子可以作为某四个数的最大公约数的因子。

4.根据容斥原理:当这个因子的由奇数个质因数构成时, 加; 当这个因子由偶数个质因子构成时, 减。

5. ans = C(n,4) - gcd(a,b,c,d)!=1的组合数。

代码如下:

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <string>
#include <vector>
#include <map>
#include <set>
#include <queue>
#include <stack>
#include <sstream>
#include <algorithm>
using namespace std;
#define pb push_back
#define mp make_pair
#define ms(a, b) memset((a), (b), sizeof(a))
#define eps 0.0000001
typedef long long LL;
const int INF = 2e9;
const LL LNF = 9e18;
const int mod = 1e9+;
const int maxn = 1e4+; LL pri[maxn], fac_num[maxn], fac_pri[maxn];
LL n, cnt; LL C(LL x)
{
return x*(x-)*(x-)*(x-)/;
} void Divide(LL x)
{
cnt = ;
for(int i = ; i*i<=x; i++)
{
if(x%i==)
{
pri[cnt++] = i;
while(x%i==) x /= i;
}
}
if(x!=) pri[cnt++] = x;
} void Unit()
{
for(LL s = ; s < (<<cnt); s++) //用二进制, 亦可用递归
{
LL tmp = , sum = ;
for(int j = ; j<cnt; j++)
if(s&(<<j))
{
tmp *= pri[j];
sum++;
} fac_num[tmp]++;
fac_pri[tmp] = sum;
}
} void init()
{
ms(fac_num, );
ms(fac_pri, ); LL x;
for(int i = ; i<=n; i++)
{
scanf("%lld",&x);
Divide(x); //分解质因数
Unit(); //质因数可以组成哪些因子(这些因子就是四个数的约数)
}
} void solve()
{
LL tmp = ;
for(int i = ; i<=1e4; i++) //容斥, 计算gcd(a,b,c,d)!=1的个数
{
if(fac_num[i]>=) //这个因子的个数必须不小于4, 才能成为4个数的约束
{
if(fac_pri[i]&) //素数个数为奇数时, 加
tmp += C(fac_num[i]);
else //素数个数为偶数时, 减
tmp -= C(fac_num[i]);
}
}
LL ans = C(n) - tmp; //总的减去gcd(a,b,c,d)!=1的个数,即为gcd(a,b,c,d)=1的个数。
printf("%lld\n", ans);
} int main()
{
while(scanf("%lld",&n)!=EOF)
{
init();
solve();
}
}

poj3904 Sky Code —— 唯一分解定理 + 容斥原理 + 组合的更多相关文章

  1. POJ3904 Sky Code

    题意 Language:Default Sky Code Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 3980 Accepte ...

  2. [poj 3904] sky code 解题报告(组合计算+容斥原理)

    题目链接:http://poj.org/problem?id=3904 题目大意: 给出一个数列,询问从中取4个元素满足最大公约数为1的方案数 题解: 很显然,ans=总的方案数-最大公约数大于1的4 ...

  3. POJ3904 Sky Code【容斥原理】

    题目链接: http://poj.org/problem?id=3904 题目大意: 给你N个整数.从这N个数中选择4个数,使得这四个数的公约数为1.求满足条件的 四元组个数. 解题思路: 四个数的公 ...

  4. POJ 3904 Sky Code (容斥原理)

    B - Sky Code Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Submit ...

  5. [poj3904]Sky Code_状态压缩_容斥原理

    Sky Code poj-3904 题目大意:给你n个数,问能选出多少满足题意的组数. 注释:如果一个组数满足题意当且仅当这个组中有且只有4个数,且这4个数的最大公约数是1,$1\le n\le 10 ...

  6. Sky Code(poj3904)

    Sky Code Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 2085   Accepted: 665 Descripti ...

  7. poj2773 —— 二分 + 容斥原理 + 唯一分解定理

    题目链接:http://poj.org/problem?id=2773 Happy 2006 Time Limit: 3000MS   Memory Limit: 65536K Total Submi ...

  8. [Codeforces 997C]Sky Full of Stars(排列组合+容斥原理)

    [Codeforces 997C]Sky Full of Stars(排列组合+容斥原理) 题面 用3种颜色对\(n×n\)的格子染色,问至少有一行或一列只有一种颜色的方案数.\((n≤10^6)\) ...

  9. Pairs Forming LCM (LCM+ 唯一分解定理)题解

    Pairs Forming LCM Find the result of the following code: ; i <= n; i++ )        for( int j = i; j ...

随机推荐

  1. 洛谷—— P1342 请柬

    https://www.luogu.org/problemnew/show/1342 题目描述 在电视时代,没有多少人观看戏剧表演.Malidinesia古董喜剧演员意识到这一事实,他们想宣传剧院,尤 ...

  2. 利用NSString的Hash方法比较字符串

    实际编程总会涉及到比较两个字符串的内容,一般会用 [string1 isEqualsToString:string2] 来比较两个字符串是否一致.对于字符串的isEqualsToString方法,需要 ...

  3. pandas常见函数详细使用

    groupby函数 pandas提供了一个灵活高效的groupby功能,它使你能以一种自然的方式对数据集进行切片.切块.摘要等操作,根据一个或多个键(可以是函数.数组.Series或DataFrame ...

  4. Android Studio 设置项目Module编码,解决Android Studio项目执行时乱码问题

    Android Studio的项目设置逻辑与Eclipse有非常大的差别.运行的操作为File->Setting->File Encodings然后来进行设置,如图所看到的: waterm ...

  5. Hibernate中的条件查询完毕类

    Hibernate中的条件查询有下面三个类完毕: 1.Criteria:代表一次查询 2.Criterion:代表一个查询条件 3.Restrictions:产生查询条件的工具类

  6. Vue beforeRouteEnter 的next执行时机

    背景 今天在用vue实现界面的时候,想在beforeRouteEnter钩子函数中去获取数据,然后通过next方法设置到跳转页面的实例中,结果发现数据一直没办法在界面渲染的时候赋值,苦思不得其解,遂g ...

  7. shell(3):文本处理、基本语法和脚本编写

    一.awk.变量.运算符.if多分支 awk:shell编辑器的一种文本处理工具/命令,同grep.sed一样均可解释正则.具体运用下面awk文本处理有详细说明. 变量:分为系统变量和临时变量.变量一 ...

  8. C#设计模式总结 C#设计模式(22)——访问者模式(Vistor Pattern) C#设计模式总结 .NET Core launch.json 简介 利用Bootstrap Paginator插件和knockout.js完成分页功能 图片在线裁剪和图片上传总结 循序渐进学.Net Core Web Api开发系列【2】:利用Swagger调试WebApi

    C#设计模式总结 一. 设计原则 使用设计模式的根本原因是适应变化,提高代码复用率,使软件更具有可维护性和可扩展性.并且,在进行设计的时候,也需要遵循以下几个原则:单一职责原则.开放封闭原则.里氏代替 ...

  9. Hadoop 50090端口的页面, Replication的数字是真实的文件备份数吗? (不是)

    红色方框的部分,代表Hadoop系统,人工设定的文件备份数,但不是实际的备份数.文件备份数 不会大于集群机器的总数目(因为备份文件不会同时存在一台机器上,这样就没有意义),所以如果总集群数目是2,即使 ...

  10. 【网络协议】TCP的流量控制机制

    一般来说,我们总是希望传输数据的更快一些,但假设发送方把数据发送的非常快.而接收方来不及接收,这就可能造成数据的丢失.流量控制就是让发送方的发送速率不要太快.让接收方来得及接收. 对于成块数据流,TC ...