题目链接:http://poj.org/problem?id=3904

Sky Code
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 2968   Accepted: 998

Description

Stancu likes space travels but he is a poor software developer and will never be able to buy his own spacecraft. That is why he is preparing to steal the spacecraft of Petru. There is only one problem – Petru has locked the spacecraft with a sophisticated cryptosystem based on the ID numbers of the stars from the Milky Way Galaxy. For breaking the system Stancu has to check each subset of four stars such that the only common divisor of their numbers is 1. Nasty, isn’t it? Fortunately, Stancu has succeeded to limit the number of the interesting stars to N but, any way, the possible subsets of four stars can be too many. Help him to find their number and to decide if there is a chance to break the system.

Input

In the input file several test cases are given. For each test case on the first line the number N of interesting stars is given (1 ≤ N ≤ 10000). The second line of the test case contains the list of ID numbers of the interesting stars, separated by spaces. Each ID is a positive integer which is no greater than 10000. The input data terminate with the end of file.

Output

For each test case the program should print one line with the number of subsets with the asked property.

Sample Input

4
2 3 4 5
4
2 4 6 8
7
2 3 4 5 7 6 8

Sample Output

1
0
34

Source

题意:

给出n个数, 随便挑4个, 使得这四个数的最大公约数为1, 问有多少种组合?

题解:

思路:先用容斥原理计算出四个数的最大公约数>=1的组合数, 然后再用总数C(n,4)减之。

1.将每个数进行分解质因数, 然后再根据这些质因数组合出不同的因子,并记录这个因子出现的次数以及由多少个质因数构成。

2.容斥原理:比如因子2的个数为a,则四个数公约数为2的个数 为C(a,4),因子3的个数为b,则四个数公约数为3的个数为C(b,4),因子6(2*3)的个 数为c,则四个数公约数的个数为C(c,4)。 但是公约数为2的情况中或者公约数为3的情况中可能包括公约数为6的情况,相当于几个集合求并集,这就需要容斥定理来做。

3.如果这个因子出现的次数>=4, 则表明这个因子可以作为某四个数的最大公约数的因子。

4.根据容斥原理:当这个因子的由奇数个质因数构成时, 加; 当这个因子由偶数个质因子构成时, 减。

5. ans = C(n,4) - gcd(a,b,c,d)!=1的组合数。

代码如下:

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <string>
#include <vector>
#include <map>
#include <set>
#include <queue>
#include <stack>
#include <sstream>
#include <algorithm>
using namespace std;
#define pb push_back
#define mp make_pair
#define ms(a, b) memset((a), (b), sizeof(a))
#define eps 0.0000001
typedef long long LL;
const int INF = 2e9;
const LL LNF = 9e18;
const int mod = 1e9+;
const int maxn = 1e4+; LL pri[maxn], fac_num[maxn], fac_pri[maxn];
LL n, cnt; LL C(LL x)
{
return x*(x-)*(x-)*(x-)/;
} void Divide(LL x)
{
cnt = ;
for(int i = ; i*i<=x; i++)
{
if(x%i==)
{
pri[cnt++] = i;
while(x%i==) x /= i;
}
}
if(x!=) pri[cnt++] = x;
} void Unit()
{
for(LL s = ; s < (<<cnt); s++) //用二进制, 亦可用递归
{
LL tmp = , sum = ;
for(int j = ; j<cnt; j++)
if(s&(<<j))
{
tmp *= pri[j];
sum++;
} fac_num[tmp]++;
fac_pri[tmp] = sum;
}
} void init()
{
ms(fac_num, );
ms(fac_pri, ); LL x;
for(int i = ; i<=n; i++)
{
scanf("%lld",&x);
Divide(x); //分解质因数
Unit(); //质因数可以组成哪些因子(这些因子就是四个数的约数)
}
} void solve()
{
LL tmp = ;
for(int i = ; i<=1e4; i++) //容斥, 计算gcd(a,b,c,d)!=1的个数
{
if(fac_num[i]>=) //这个因子的个数必须不小于4, 才能成为4个数的约束
{
if(fac_pri[i]&) //素数个数为奇数时, 加
tmp += C(fac_num[i]);
else //素数个数为偶数时, 减
tmp -= C(fac_num[i]);
}
}
LL ans = C(n) - tmp; //总的减去gcd(a,b,c,d)!=1的个数,即为gcd(a,b,c,d)=1的个数。
printf("%lld\n", ans);
} int main()
{
while(scanf("%lld",&n)!=EOF)
{
init();
solve();
}
}

poj3904 Sky Code —— 唯一分解定理 + 容斥原理 + 组合的更多相关文章

  1. POJ3904 Sky Code

    题意 Language:Default Sky Code Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 3980 Accepte ...

  2. [poj 3904] sky code 解题报告(组合计算+容斥原理)

    题目链接:http://poj.org/problem?id=3904 题目大意: 给出一个数列,询问从中取4个元素满足最大公约数为1的方案数 题解: 很显然,ans=总的方案数-最大公约数大于1的4 ...

  3. POJ3904 Sky Code【容斥原理】

    题目链接: http://poj.org/problem?id=3904 题目大意: 给你N个整数.从这N个数中选择4个数,使得这四个数的公约数为1.求满足条件的 四元组个数. 解题思路: 四个数的公 ...

  4. POJ 3904 Sky Code (容斥原理)

    B - Sky Code Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Submit ...

  5. [poj3904]Sky Code_状态压缩_容斥原理

    Sky Code poj-3904 题目大意:给你n个数,问能选出多少满足题意的组数. 注释:如果一个组数满足题意当且仅当这个组中有且只有4个数,且这4个数的最大公约数是1,$1\le n\le 10 ...

  6. Sky Code(poj3904)

    Sky Code Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 2085   Accepted: 665 Descripti ...

  7. poj2773 —— 二分 + 容斥原理 + 唯一分解定理

    题目链接:http://poj.org/problem?id=2773 Happy 2006 Time Limit: 3000MS   Memory Limit: 65536K Total Submi ...

  8. [Codeforces 997C]Sky Full of Stars(排列组合+容斥原理)

    [Codeforces 997C]Sky Full of Stars(排列组合+容斥原理) 题面 用3种颜色对\(n×n\)的格子染色,问至少有一行或一列只有一种颜色的方案数.\((n≤10^6)\) ...

  9. Pairs Forming LCM (LCM+ 唯一分解定理)题解

    Pairs Forming LCM Find the result of the following code: ; i <= n; i++ )        for( int j = i; j ...

随机推荐

  1. Xamarin.Forms的滚动视图ScrollView

    Xamarin.Forms的滚动视图ScrollView   在Xamarin.Forms中,滚动视图ScrollView用来实现长内容的滚动显示.虽然ScrollView的Content属性只能设置 ...

  2. POJ 3268 Silver Cow Party 最短路

    原题链接:http://poj.org/problem?id=3268 Silver Cow Party Time Limit: 2000MS   Memory Limit: 65536K Total ...

  3. 简单的makefile模板

    makefile不是总用到,每次用到的时候总要重新找资料,有点麻烦(怪自己基础知识不扎实,汗).留一个通用模板放这,方便以后使用 CC = gcc CXX = g++ LINK = g++ CFLAG ...

  4. Css Position定位(简易版本)

    准备前的知识: 定位只对块级起作用.如div,p等元素是块级元素,如果是内联元素则可以先变成块级元素,display:block即可. 开始讲解: 定位共四种:static,fixed,relativ ...

  5. oracle 查看各表空间剩余量

    1.查看所有表空间大小.剩余量: select dbf.tablespace_name,dbf.totalspace "总量(M)",dbf.totalblocks as 总块数, ...

  6. Unity Shaders and Effects Cookbook (3-4) 使用高光贴图

    在学习完上一节之后.已经了解了在Unity 中怎样实现一个高光 Shader ,可是会有一个问题.就是效果看起来不切实际,如以下的问题 我用一张图片贴到了Cube上面.然后用了一个高光材质,得到了下图 ...

  7. 从零開始开发Android版2048 (二)获取手势信息

    今天是尝试開始Android版2048小游戏的第二天.在今天,我主要学习了怎样获取用户在屏幕滑动的手势,以及对布局进行了一些小小的完好. 获取用户操作的手势(比方向左滑.向右滑等)主要用到了Gestu ...

  8. pwm驱动原理和代码实现

    学这个pwm真是非常曲则,首先是看s3c2440的datasheet,全英文的,并且还有硬件的时序图(非常多是硬件的工作原理,和软件控制不相关). 看了非常久加上网上看了资料才把这个pwm弄通. 当然 ...

  9. c语言-完全背包问题

    完全背包问题 问题:有N种物品和一个容量为V的背包,每种物品都有无限件可用.第i种物品的费用是c[i],价值是w[i].求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大. 分 ...

  10. Ubuntu14下Hadoop开发&lt;2&gt; 编译64位Hadoop2.4

    Hadoop官方站点仅仅提供了32位的Hadoop包.我装的是64位的系统.自然无法使用,会报错误,导致的结果是无法启动hadoop libhadoop.so.1.0.0 which might ha ...