poj3904 Sky Code —— 唯一分解定理 + 容斥原理 + 组合
题目链接:http://poj.org/problem?id=3904
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 2968 | Accepted: 998 |
Description
Input
Output
Sample Input
4
2 3 4 5
4
2 4 6 8
7
2 3 4 5 7 6 8
Sample Output
1
0
34
Source
题意:
给出n个数, 随便挑4个, 使得这四个数的最大公约数为1, 问有多少种组合?
题解:
思路:先用容斥原理计算出四个数的最大公约数>=1的组合数, 然后再用总数C(n,4)减之。
1.将每个数进行分解质因数, 然后再根据这些质因数组合出不同的因子,并记录这个因子出现的次数以及由多少个质因数构成。
2.容斥原理:比如因子2的个数为a,则四个数公约数为2的个数 为C(a,4),因子3的个数为b,则四个数公约数为3的个数为C(b,4),因子6(2*3)的个 数为c,则四个数公约数的个数为C(c,4)。 但是公约数为2的情况中或者公约数为3的情况中可能包括公约数为6的情况,相当于几个集合求并集,这就需要容斥定理来做。
3.如果这个因子出现的次数>=4, 则表明这个因子可以作为某四个数的最大公约数的因子。
4.根据容斥原理:当这个因子的由奇数个质因数构成时, 加; 当这个因子由偶数个质因子构成时, 减。
5. ans = C(n,4) - gcd(a,b,c,d)!=1的组合数。
代码如下:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <string>
#include <vector>
#include <map>
#include <set>
#include <queue>
#include <stack>
#include <sstream>
#include <algorithm>
using namespace std;
#define pb push_back
#define mp make_pair
#define ms(a, b) memset((a), (b), sizeof(a))
#define eps 0.0000001
typedef long long LL;
const int INF = 2e9;
const LL LNF = 9e18;
const int mod = 1e9+;
const int maxn = 1e4+; LL pri[maxn], fac_num[maxn], fac_pri[maxn];
LL n, cnt; LL C(LL x)
{
return x*(x-)*(x-)*(x-)/;
} void Divide(LL x)
{
cnt = ;
for(int i = ; i*i<=x; i++)
{
if(x%i==)
{
pri[cnt++] = i;
while(x%i==) x /= i;
}
}
if(x!=) pri[cnt++] = x;
} void Unit()
{
for(LL s = ; s < (<<cnt); s++) //用二进制, 亦可用递归
{
LL tmp = , sum = ;
for(int j = ; j<cnt; j++)
if(s&(<<j))
{
tmp *= pri[j];
sum++;
} fac_num[tmp]++;
fac_pri[tmp] = sum;
}
} void init()
{
ms(fac_num, );
ms(fac_pri, ); LL x;
for(int i = ; i<=n; i++)
{
scanf("%lld",&x);
Divide(x); //分解质因数
Unit(); //质因数可以组成哪些因子(这些因子就是四个数的约数)
}
} void solve()
{
LL tmp = ;
for(int i = ; i<=1e4; i++) //容斥, 计算gcd(a,b,c,d)!=1的个数
{
if(fac_num[i]>=) //这个因子的个数必须不小于4, 才能成为4个数的约束
{
if(fac_pri[i]&) //素数个数为奇数时, 加
tmp += C(fac_num[i]);
else //素数个数为偶数时, 减
tmp -= C(fac_num[i]);
}
}
LL ans = C(n) - tmp; //总的减去gcd(a,b,c,d)!=1的个数,即为gcd(a,b,c,d)=1的个数。
printf("%lld\n", ans);
} int main()
{
while(scanf("%lld",&n)!=EOF)
{
init();
solve();
}
}
poj3904 Sky Code —— 唯一分解定理 + 容斥原理 + 组合的更多相关文章
- POJ3904 Sky Code
题意 Language:Default Sky Code Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 3980 Accepte ...
- [poj 3904] sky code 解题报告(组合计算+容斥原理)
题目链接:http://poj.org/problem?id=3904 题目大意: 给出一个数列,询问从中取4个元素满足最大公约数为1的方案数 题解: 很显然,ans=总的方案数-最大公约数大于1的4 ...
- POJ3904 Sky Code【容斥原理】
题目链接: http://poj.org/problem?id=3904 题目大意: 给你N个整数.从这N个数中选择4个数,使得这四个数的公约数为1.求满足条件的 四元组个数. 解题思路: 四个数的公 ...
- POJ 3904 Sky Code (容斥原理)
B - Sky Code Time Limit:1000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u Submit ...
- [poj3904]Sky Code_状态压缩_容斥原理
Sky Code poj-3904 题目大意:给你n个数,问能选出多少满足题意的组数. 注释:如果一个组数满足题意当且仅当这个组中有且只有4个数,且这4个数的最大公约数是1,$1\le n\le 10 ...
- Sky Code(poj3904)
Sky Code Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 2085 Accepted: 665 Descripti ...
- poj2773 —— 二分 + 容斥原理 + 唯一分解定理
题目链接:http://poj.org/problem?id=2773 Happy 2006 Time Limit: 3000MS Memory Limit: 65536K Total Submi ...
- [Codeforces 997C]Sky Full of Stars(排列组合+容斥原理)
[Codeforces 997C]Sky Full of Stars(排列组合+容斥原理) 题面 用3种颜色对\(n×n\)的格子染色,问至少有一行或一列只有一种颜色的方案数.\((n≤10^6)\) ...
- Pairs Forming LCM (LCM+ 唯一分解定理)题解
Pairs Forming LCM Find the result of the following code: ; i <= n; i++ ) for( int j = i; j ...
随机推荐
- 洛谷—— P1342 请柬
https://www.luogu.org/problemnew/show/1342 题目描述 在电视时代,没有多少人观看戏剧表演.Malidinesia古董喜剧演员意识到这一事实,他们想宣传剧院,尤 ...
- 利用NSString的Hash方法比较字符串
实际编程总会涉及到比较两个字符串的内容,一般会用 [string1 isEqualsToString:string2] 来比较两个字符串是否一致.对于字符串的isEqualsToString方法,需要 ...
- pandas常见函数详细使用
groupby函数 pandas提供了一个灵活高效的groupby功能,它使你能以一种自然的方式对数据集进行切片.切块.摘要等操作,根据一个或多个键(可以是函数.数组.Series或DataFrame ...
- Android Studio 设置项目Module编码,解决Android Studio项目执行时乱码问题
Android Studio的项目设置逻辑与Eclipse有非常大的差别.运行的操作为File->Setting->File Encodings然后来进行设置,如图所看到的: waterm ...
- Hibernate中的条件查询完毕类
Hibernate中的条件查询有下面三个类完毕: 1.Criteria:代表一次查询 2.Criterion:代表一个查询条件 3.Restrictions:产生查询条件的工具类
- Vue beforeRouteEnter 的next执行时机
背景 今天在用vue实现界面的时候,想在beforeRouteEnter钩子函数中去获取数据,然后通过next方法设置到跳转页面的实例中,结果发现数据一直没办法在界面渲染的时候赋值,苦思不得其解,遂g ...
- shell(3):文本处理、基本语法和脚本编写
一.awk.变量.运算符.if多分支 awk:shell编辑器的一种文本处理工具/命令,同grep.sed一样均可解释正则.具体运用下面awk文本处理有详细说明. 变量:分为系统变量和临时变量.变量一 ...
- C#设计模式总结 C#设计模式(22)——访问者模式(Vistor Pattern) C#设计模式总结 .NET Core launch.json 简介 利用Bootstrap Paginator插件和knockout.js完成分页功能 图片在线裁剪和图片上传总结 循序渐进学.Net Core Web Api开发系列【2】:利用Swagger调试WebApi
C#设计模式总结 一. 设计原则 使用设计模式的根本原因是适应变化,提高代码复用率,使软件更具有可维护性和可扩展性.并且,在进行设计的时候,也需要遵循以下几个原则:单一职责原则.开放封闭原则.里氏代替 ...
- Hadoop 50090端口的页面, Replication的数字是真实的文件备份数吗? (不是)
红色方框的部分,代表Hadoop系统,人工设定的文件备份数,但不是实际的备份数.文件备份数 不会大于集群机器的总数目(因为备份文件不会同时存在一台机器上,这样就没有意义),所以如果总集群数目是2,即使 ...
- 【网络协议】TCP的流量控制机制
一般来说,我们总是希望传输数据的更快一些,但假设发送方把数据发送的非常快.而接收方来不及接收,这就可能造成数据的丢失.流量控制就是让发送方的发送速率不要太快.让接收方来得及接收. 对于成块数据流,TC ...