poj3904 Sky Code —— 唯一分解定理 + 容斥原理 + 组合
题目链接:http://poj.org/problem?id=3904
| Time Limit: 1000MS | Memory Limit: 65536K | |
| Total Submissions: 2968 | Accepted: 998 |
Description
Input
Output
Sample Input
4
2 3 4 5
4
2 4 6 8
7
2 3 4 5 7 6 8
Sample Output
1
0
34
Source
题意:
给出n个数, 随便挑4个, 使得这四个数的最大公约数为1, 问有多少种组合?
题解:
思路:先用容斥原理计算出四个数的最大公约数>=1的组合数, 然后再用总数C(n,4)减之。
1.将每个数进行分解质因数, 然后再根据这些质因数组合出不同的因子,并记录这个因子出现的次数以及由多少个质因数构成。
2.容斥原理:比如因子2的个数为a,则四个数公约数为2的个数 为C(a,4),因子3的个数为b,则四个数公约数为3的个数为C(b,4),因子6(2*3)的个 数为c,则四个数公约数的个数为C(c,4)。 但是公约数为2的情况中或者公约数为3的情况中可能包括公约数为6的情况,相当于几个集合求并集,这就需要容斥定理来做。
3.如果这个因子出现的次数>=4, 则表明这个因子可以作为某四个数的最大公约数的因子。
4.根据容斥原理:当这个因子的由奇数个质因数构成时, 加; 当这个因子由偶数个质因子构成时, 减。
5. ans = C(n,4) - gcd(a,b,c,d)!=1的组合数。
代码如下:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <string>
#include <vector>
#include <map>
#include <set>
#include <queue>
#include <stack>
#include <sstream>
#include <algorithm>
using namespace std;
#define pb push_back
#define mp make_pair
#define ms(a, b) memset((a), (b), sizeof(a))
#define eps 0.0000001
typedef long long LL;
const int INF = 2e9;
const LL LNF = 9e18;
const int mod = 1e9+;
const int maxn = 1e4+; LL pri[maxn], fac_num[maxn], fac_pri[maxn];
LL n, cnt; LL C(LL x)
{
return x*(x-)*(x-)*(x-)/;
} void Divide(LL x)
{
cnt = ;
for(int i = ; i*i<=x; i++)
{
if(x%i==)
{
pri[cnt++] = i;
while(x%i==) x /= i;
}
}
if(x!=) pri[cnt++] = x;
} void Unit()
{
for(LL s = ; s < (<<cnt); s++) //用二进制, 亦可用递归
{
LL tmp = , sum = ;
for(int j = ; j<cnt; j++)
if(s&(<<j))
{
tmp *= pri[j];
sum++;
} fac_num[tmp]++;
fac_pri[tmp] = sum;
}
} void init()
{
ms(fac_num, );
ms(fac_pri, ); LL x;
for(int i = ; i<=n; i++)
{
scanf("%lld",&x);
Divide(x); //分解质因数
Unit(); //质因数可以组成哪些因子(这些因子就是四个数的约数)
}
} void solve()
{
LL tmp = ;
for(int i = ; i<=1e4; i++) //容斥, 计算gcd(a,b,c,d)!=1的个数
{
if(fac_num[i]>=) //这个因子的个数必须不小于4, 才能成为4个数的约束
{
if(fac_pri[i]&) //素数个数为奇数时, 加
tmp += C(fac_num[i]);
else //素数个数为偶数时, 减
tmp -= C(fac_num[i]);
}
}
LL ans = C(n) - tmp; //总的减去gcd(a,b,c,d)!=1的个数,即为gcd(a,b,c,d)=1的个数。
printf("%lld\n", ans);
} int main()
{
while(scanf("%lld",&n)!=EOF)
{
init();
solve();
}
}
poj3904 Sky Code —— 唯一分解定理 + 容斥原理 + 组合的更多相关文章
- POJ3904 Sky Code
题意 Language:Default Sky Code Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 3980 Accepte ...
- [poj 3904] sky code 解题报告(组合计算+容斥原理)
题目链接:http://poj.org/problem?id=3904 题目大意: 给出一个数列,询问从中取4个元素满足最大公约数为1的方案数 题解: 很显然,ans=总的方案数-最大公约数大于1的4 ...
- POJ3904 Sky Code【容斥原理】
题目链接: http://poj.org/problem?id=3904 题目大意: 给你N个整数.从这N个数中选择4个数,使得这四个数的公约数为1.求满足条件的 四元组个数. 解题思路: 四个数的公 ...
- POJ 3904 Sky Code (容斥原理)
B - Sky Code Time Limit:1000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u Submit ...
- [poj3904]Sky Code_状态压缩_容斥原理
Sky Code poj-3904 题目大意:给你n个数,问能选出多少满足题意的组数. 注释:如果一个组数满足题意当且仅当这个组中有且只有4个数,且这4个数的最大公约数是1,$1\le n\le 10 ...
- Sky Code(poj3904)
Sky Code Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 2085 Accepted: 665 Descripti ...
- poj2773 —— 二分 + 容斥原理 + 唯一分解定理
题目链接:http://poj.org/problem?id=2773 Happy 2006 Time Limit: 3000MS Memory Limit: 65536K Total Submi ...
- [Codeforces 997C]Sky Full of Stars(排列组合+容斥原理)
[Codeforces 997C]Sky Full of Stars(排列组合+容斥原理) 题面 用3种颜色对\(n×n\)的格子染色,问至少有一行或一列只有一种颜色的方案数.\((n≤10^6)\) ...
- Pairs Forming LCM (LCM+ 唯一分解定理)题解
Pairs Forming LCM Find the result of the following code: ; i <= n; i++ ) for( int j = i; j ...
随机推荐
- Unity3d Inspector面板实现set/get访问器
简单说一下属性和字段的区别:字段就是成员变量,而属性确实提供给外部访问内部成员变量的接口.之所以会有属性的出现,就是为了避免外部对类的成员的直接访问,通俗的说就是OOP中的封装思想. using Un ...
- Skiing(最短路)
poj——3037 Skiing Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 4921 Accepted: 1315 ...
- Java中PO、BO、VO、DTO、POJO、DAO概念及其作用和项目实例图(转)
PO(bean.entity等命名): Persistant Object持久对象,数据库表中的记录在java对象中的显示状态 最形象的理解就是一个PO就是数据库中的一条记录. 好处是可以把一条记录作 ...
- BT原理分析(转)
BT种子文件结构分析,参考:http://www.cnblogs.com/EasonJim/p/6601047.html BT下载,参考:http://baike.baidu.com/item/BT下 ...
- Cocos2d-x 3.0 打造一个全平台概念文件夹
Cocos2d-x 3.0 打造一个全平台概念文件夹http:// www.eoeandroid.com/thread-328055-1-1.html
- vs2012 MinGW编译ffmpeg 出现libavdevice/avdevice.c(38) : error C2059: 语法错误:“.”
利用vs2012编译ffmpeg出现以下错误: libavdevice/avdevice.c(38) : error C2059: 语法错误:“.” libavdevice/avdevice.c(40 ...
- poj3211 Washing Clothes
Description Dearboy was so busy recently that now he has piles of clothes to wash. Luckily, he has a ...
- C语言函数的递归和调用
函数记住两点: (1)每个函数运行完才会返回调用它的函数:每个函数运行完才会返回调用它的函数,因此,你可以先看看这个函数不自我调用的条件,也就是fun()中if条件不成立的时候,对吧,不成立的时候就是 ...
- WPF简单计算器
- Hadoop 服务器配置的副本数量 管不了客户端
副本数由客户端的参数dfs.replication决定(优先级: conf.set > 自定义配置文件 > jar包中的hdfs-default.xml)如果前两个都没有,就用最后一个ja ...