Description

对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数。

Input

第一行一个整数n,接下来n行每行五个整数,分别表示a、b、c、d、k

Output

共n行,每行一个整数表示满足要求的数对(x,y)的个数

Sample Input

2
2 5 1 5 1
1 5 1 5 2

Sample Output

14
3

HINT

100%的数据满足:1≤n≤50000,1≤a≤b≤50000,1≤c≤d≤50000,1≤k≤50000

题解

同bzoj1101

区间加减

 #include<cstring>
#include<cmath>
#include<iostream>
#include<algorithm>
#include<cstdio> #define N 50007
using namespace std;
inline int read()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if (ch=='-') f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=(x<<)+(x<<)+ch-'';ch=getchar();}
return x*f;
} int n,m,T;
int tot,pri[N],mu[N],sum[N];
bool flag[N]; void init_mu()
{
mu[]=;
for (int i=;i<=;i++)
{
if (!flag[i]) pri[++tot]=i,mu[i]=-;
for (int j=;j<=tot&&pri[j]*i<=;j++)
{
flag[pri[j]*i]=;
if (i%pri[j]==){mu[i*pri[j]]=;break;}
else mu[i*pri[j]]=-mu[i];
}
}
for (int i=;i<=;i++)
sum[i]=sum[i-]+mu[i];
}
int solve(int n,int m)
{
if (n>m) swap(n,m);
int ans=,ps;
for (int i=;i<=n;i=ps+)
{
ps=min(n/(n/i),m/(m/i));
ans+=(sum[ps]-sum[i-])*(n/i)*(m/i);
}
return ans;
}
int main()
{
init_mu();
T=read();
while(T--)
{
int a=read(),b=read(),c=read(),d=read(),k=read();
a=(a-)/k,b=b/k,c=(c-)/k,d=d/k;
printf("%d\n",solve(b,d)+solve(a,c)-solve(a,d)-solve(c,b));
}
}

【bzoj2301】[HAOI2011]Problem b 莫比乌斯反演的更多相关文章

  1. BZOJ2301: [HAOI2011]Problem b[莫比乌斯反演 容斥原理]【学习笔记】

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 4032  Solved: 1817[Submit] ...

  2. BZOJ2301: [HAOI2011]Problem b 莫比乌斯反演

    分析:对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 然后对于求这样单个的gcd(x,y)=k的, ...

  3. [bzoj2301][HAOI2011]Problem B —— 莫比乌斯反演+容斥原理

    题意 给定a, b, c, d, k,求出: \[\sum_{i=a}^b\sum_{j=c}^d[gcd(i, j) = k]\] 题解 为方便表述,我们设 \[calc(\alpha, \beta ...

  4. BZOJ2301:[HAOI2011]Problem b(莫比乌斯反演,容斥)

    Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. Input 第一行一个整数 ...

  5. [BZOJ1101&BZOJ2301][POI2007]Zap [HAOI2011]Problem b|莫比乌斯反演

    对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd(x,y)=d. 我们可以令F[n]=使得n|(x,y)的数对(x,y)个数 这个很容易得到,只需要让x, ...

  6. P2522 [HAOI2011]Problem b (莫比乌斯反演)

    题目 P2522 [HAOI2011]Problem b 解析: 具体推导过程同P3455 [POI2007]ZAP-Queries 不同的是,这个题求的是\(\sum_{i=a}^b\sum_{j= ...

  7. Bzoj 2301: [HAOI2011]Problem b(莫比乌斯反演+除法分块)

    2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MB Description 对于给出的n个询问,每次求有多少个数对(x, ...

  8. BZOJ 2301: [HAOI2011]Problem b 莫比乌斯反演

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 1007  Solved: 415[Submit][ ...

  9. BZOJ.2301.[HAOI2011]Problem B(莫比乌斯反演 容斥)

    [Update] 我好像现在都看不懂我当时在写什么了=-= \(Description\) 求\(\sum_{i=a}^b\sum_{j=c}^d[(i,j)=k]\) \(Solution\) 首先 ...

  10. [POI2007]ZAP-Queries && [HAOI2011]Problem b 莫比乌斯反演

    1,[POI2007]ZAP-Queries ---题面---题解: 首先列出式子:$$ans = \sum_{i = 1}^{n}\sum_{j = 1}^{m}[gcd(i, j) == d]$$ ...

随机推荐

  1. 掘金 里面 写文章 带目录的时候 用#(空格)标题 后面用## title,一个页面只有一个H1

    掘金 里面 写文章 带目录的时候 用#(空格)标题 后面用## title,一个页面只有一个H1

  2. Ajax的原理及Django上传组件

    title: Ajax的原理及Django上传组件 tags: Django --- Ajax的原理及Django上传组件 Ajax的原理 ajax 是异步JavaScript和xml ajax就是向 ...

  3. 01_12_Struts2_访问Web元素

    01_12_Struts2_访问Web元素 1. 配置struts.xml文件 <package name="login" namespace="/login&qu ...

  4. [CF] 180 E. Cubes

    对同类元素双指针扫描 #include<iostream> #include<cstring> #include<cstdio> #include<vecto ...

  5. spring boot yaml 自定义配置 映射到 java POJO

    只需要一个注解就ok: @ConfigurationProperties("user.other") “user.other” 这个值匹配的是user下的other对象 yaml ...

  6. Vue表单输入绑定

    <h3>基础用法</h3> <p>你可以用<strong>v-model</strong>指令在表单input,textarea以及sele ...

  7. 《流畅的python》读书笔记,第一章:python数据模型

    这本书上来就讲了魔法方法,也叫双下方法.特殊方法,通过两个例子对让读者了解了双下方法的用法,更重要的是,让我一窥Python的语言风格和给使用者的自由度. 第一个例子:一摞Python风格的纸牌: i ...

  8. hdu-2544 最短路(最短路)

    Time limit1000 ms Memory limit32768 kB   在每年的校赛里,所有进入决赛的同学都会获得一件很漂亮的t-shirt.但是每当我们的工作人员把上百件的衣服从商店运回到 ...

  9. while循环输出的表格

    方法一: <?php echo '<table border="1" width="800" align="center"> ...

  10. POJ 3469 最小割 Dual Core CPU

    题意: 一个双核CPU上运行N个模块,每个模块在两个核上运行的费用分别为Ai和Bi. 同时,有M对模块需要进行数据交换,如果这两个模块不在同一个核上运行需要额外花费. 求运行N个模块的最小费用. 分析 ...