题目描述

Y901高速公路是一条重要的交通纽带,政府部门建设初期的投入以及使用期间的养护费用都不低,因此政府在这条高速公路上设立了许多收费站。
Y901高速公路是一条由N-1段路以及N个收费站组成的东西向的链,我们按照由西向东的顺序将收费站依次编号为1~N,从收费站i行驶到i+1(或从i+1行驶到i)需要收取Vi的费用。高速路刚建成时所有的路段都是免费的。
政府部门根据实际情况,会不定期地对连续路段的收费标准进行调整,根据政策涨价或降价。
无聊的小A同学总喜欢研究一些稀奇古怪的问题,他开车在这条高速路上行驶时想到了这样一个问题:对于给定的l,r(l<r),在第l个到第r个收费站里等概率随机取出两个不同的收费站a和b,那么从a行驶到b将期望花费多少费用呢?

输入

第一行2个正整数N,M,表示有N个收费站,M次调整或询问
接下来M行,每行将出现以下两种形式中的一种
C l r v 表示将第l个收费站到第r个收费站之间的所有道路的通行费全部增加v
Q l r   表示对于给定的l,r,要求回答小A的问题
所有C与Q操作中保证1<=l<r<=N

输出

对于每次询问操作回答一行,输出一个既约分数
若答案为整数a,输出a/1

样例输入

4 5
C 1 4 2
C 1 2 -1
Q 1 2
Q 2 4
Q 1 4

样例输出

1/1
8/3
17/6


题解

线段树

首先将每次修改和询问的r减1,把线段权值转化为点权值。

然后使用总和/总次数的方式计算期望。

考虑第$i$个点$(l\le i\le r)$,它被选中的次数为$(i-l+1)*(r-i+1)$,所以所求即为

于是直接开3棵线段树维护$v[i]*i*i$、$v[i]*i$、$v[i]$的区间和即可。

注意要开long long。

#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 100010
#define lson l , mid , x << 1
#define rson mid + 1 , r , x << 1 | 1
using namespace std;
typedef long long ll;
struct data
{
ll sum[N << 2] , si[N << 2] , add[N << 2];
void pushdown(int x)
{
if(add[x])
{
sum[x << 1] += add[x] * si[x << 1] , add[x << 1] += add[x];
sum[x << 1 | 1] += add[x] * si[x << 1 | 1] , add[x << 1 | 1] += add[x];
add[x] = 0;
}
}
void build(int flag , int l , int r , int x)
{
if(l == r)
{
if(flag == 0) si[x] = 1;
else if(flag == 1) si[x] = l;
else si[x] = (ll)l * l;
return;
}
int mid = (l + r) >> 1;
build(flag , lson) , build(flag , rson);
si[x] = si[x << 1] + si[x << 1 | 1];
}
void update(int b , int e , ll a , int l , int r , int x)
{
if(b <= l && r <= e)
{
sum[x] += a * si[x] , add[x] += a;
return;
}
pushdown(x);
int mid = (l + r) >> 1;
if(b <= mid) update(b , e , a , lson);
if(e > mid) update(b , e , a , rson);
sum[x] = sum[x << 1] + sum[x << 1 | 1];
}
ll query(int b , int e , int l , int r , int x)
{
if(b <= l && r <= e) return sum[x];
pushdown(x);
int mid = (l + r) >> 1;
ll ans = 0;
if(b <= mid) ans += query(b , e , lson);
if(e > mid) ans += query(b , e , rson);
return ans;
}
}A , B , C;
char str[5];
ll gcd(ll a , ll b)
{
return b ? gcd(b , a % b) : a;
}
int main()
{
int n , m , x , y;
ll z , t , d;
scanf("%d%d" , &n , &m) , n -- ;
A.build(0 , 1 , n , 1) , B.build(1 , 1 , n , 1) , C.build(2 , 1 , n , 1);
while(m -- )
{
scanf("%s%d%d" , str , &x , &y) , y -- ;
if(str[0] == 'C')
scanf("%lld" , &z) , A.update(x , y , z , 1 , n , 1) , B.update(x , y , z , 1 , n , 1) , C.update(x , y , z , 1 , n , 1);
else
{
t = (y - x + 1 - (ll)y * x) * A.query(x , y , 1 , n , 1) + (y + x) * B.query(x , y , 1 , n , 1) - C.query(x , y , 1 , n , 1);
d = gcd(t , (ll)(y - x + 1) * (y - x + 2) / 2);
printf("%lld/%lld\n" , t / d , (ll)(y - x + 1) * (y - x + 2) / 2 / d);
}
}
return 0;
}

【bzoj2752】[HAOI2012]高速公路(road) 线段树的更多相关文章

  1. BZOJ2752: [HAOI2012]高速公路(road)(线段树 期望)

    Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 1820  Solved: 736[Submit][Status][Discuss] Descripti ...

  2. BZOJ 2752: [HAOI2012]高速公路(road)( 线段树 )

    对于询问[L, R], 我们直接考虑每个p(L≤p≤R)的贡献,可以得到 然后化简一下得到 这样就可以很方便地用线段树, 维护一个p, p*vp, p*(p+1)*vp就可以了 ----------- ...

  3. BZOJ 2752: [HAOI2012]高速公路(road) [线段树 期望]

    2752: [HAOI2012]高速公路(road) Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 1219  Solved: 446[Submit] ...

  4. 2019.01.14 bzoj2752: [HAOI2012]高速公路(线段树)

    传送门 线段树菜题. 题意简述:给一条nnn个点的链,链有边权,支持区间修改边权,查询在一段区间内随机选择不同的起点和终点路径的期望总边权和. 思路:考虑每条边的贡献. 考虑对于一段区间[l,r][l ...

  5. 【线段树】BZOJ2752: [HAOI2012]高速公路(road)

    2752: [HAOI2012]高速公路(road) Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 1621  Solved: 627[Submit] ...

  6. BZOJ2752: [HAOI2012]高速公路(road)

    2752: [HAOI2012]高速公路(road) Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 608  Solved: 199[Submit][ ...

  7. P2221 [HAOI2012]高速公路(线段树)

    P2221 [HAOI2012]高速公路 显然答案为 $\dfrac{\sum_{i=l}^r\sum_{j=l}^{r}dis[i][j]}{C_{r-l+1}^2}$ 下面倒是挺好算,组合数瞎搞 ...

  8. 洛谷P2221 [HAOI2012]高速公路(线段树+概率期望)

    传送门 首先,答案等于$$ans=\sum_{i=l}^r\sum_{j=i}^r\frac{sum(i,j)}{C_{r-l+1}^2}$$ 也就是说所有情况的和除以总的情况数 因为这是一条链,我们 ...

  9. [luoguP2221] [HAOI2012]高速公路(线段树)

    传送门 考虑每一段对答案的贡献 用每一段的左端点来表示当前这一段,那么区间就变成了[1,n-1] 如果询问区间[l,r],其中一个点的位置为x,则它对答案的贡献为(x-l)*(r-x)*s[x](s[ ...

随机推荐

  1. 百度site网址显示完整站点信息的分析

    去年赛花红就发现百度site本博客网址,仅出现找到相关结果数约多少个,数字为估算值,网站管理员如需了解更准确的索引量,请使用百度站长平台等字样.但赛花红又发现有的网站却显示着完整的站点信息,当时以为是 ...

  2. mysql grant 用户权限说明

    mysql grant 用户权限说明 Mysql 有多个个权限?经常记不住,今天总结一下,看后都能牢牢的记在心里啦!! 很明显总共28个权限:下面是具体的权限介绍:转载的,记录一下: 一.权限表 my ...

  3. Oracle11g 数据库的导入导出

    导出: 全部: exp imagesys/imagesys@orcl file=/icms/20170116.dmp full=y 用户: exp imagesys/imagesys @orcl fi ...

  4. 关于UINavigationController的一些技巧

    未自定义任何东西的导航条效果如下: 1.自定义了 leftBarButtonItem 之后,左滑返回手势失效了,解决办法: self.navigationController.interactiveP ...

  5. 基础的Mapgis三维二次开发-插件式

    最近在做一个杭州石油的项目开发一个小系统. 1.命令必须是 ICommand 的派生类 using System; using System.Collections.Generic; using Sy ...

  6. k8s调度的预选策略及优选函数

    scheduler调度过程:    Predicate(预选)-->Priority(优选)-->Select(选定)调度方式:    1.节点亲和性调度(NodeAffinity)使用n ...

  7. IIS7.0/8.0的错误HTTP Error 500.19 - Internal Server Error ,错误代码为0x80070021

    最近在部署项目的时候,总是出现了这个问题. 大概原因为IIS7.0的安全设定相比前版本有很大的变更.IIS7.0的安全设置文件在%windir%\system32\inetsrv \config\ap ...

  8. python GIL锁、进程池与线程池、同步异步

    一.GIL全局解释器锁 全局解释器锁 在CPython中,全局解释器锁(GIL)是一个互斥锁,它可以防止多个本机线程同时执行Python代码.之所以需要这个锁,主要是因为CPython的内存管理不是线 ...

  9. LeetCode(206) Reverse Linked List

    题目 Reverse a singly linked list. click to show more hints. Hint: A linked list can be reversed eithe ...

  10. 深入理解FIFO(包含有FIFO深度的解释)——转载

    深入理解FIFO(包含有FIFO深度的解释) FIFO: 一.先入先出队列(First Input First Output,FIFO)这是一种传统的按序执行方法,先进入的指令先完成并引退,跟着才执行 ...