BZOJ 4820 [Sdoi2017]硬币游戏 ——期望DP 高斯消元
做法太神了,理解不了。
自己想到的是建出AC自动机然后建出矩阵然后求逆计算,感觉可以过$40%$
用一个状态$N$表示任意一个位置没有匹配成功的概率和。
每种匹配不成功的情况都是等价的。
然后我们强制在后面加上长度为m的01串,那么这个串的概率是一定的。
然后考虑加上的这些字符还能拼成什么串,因为状态$N$的末尾是不确定的。
如果另外一个串的后缀等于这个串的前缀的话,是可能带来影响的。
所以计算出影响的概率,然后高斯消元即可。
然而有一个问题,N的概率最后消出来代表什么意思啊,是指期望的长度吗?
希望各位dalao不吝赐教。
#include <map>
#include <cmath>
#include <queue>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define F(i,j,k) for (int i=j;i<=k;++i)
#define D(i,j,k) for (int i=j;i>=k;--i)
#define ll long long
#define mp make_pair int n,m,s[305][305],str[605],fail[605];
char ss[305];
double a[305][305],pw[305],ans[305]; void kmp()
{
// F(i,1,2*m) printf("%d ",str[i]); printf("\n");
str[0]=-1;
memset(fail,0,sizeof fail);
for (int i=2,j=0;i<=2*m;++i)
{
while (j&&str[i]!=str[j+1]) j=fail[j];
if (str[j+1]==str[i]) j++;
fail[i]=j;
}
// F(i,1,2*m) printf("%d ",fail[i]);printf("\n");
} void solve(int x)
{
a[x][x]=1;F(i,1,m) str[i]=s[x][i];
F(y,1,n)// if (y!=x)
{
F(i,1,m) str[i+m]=s[y][i]; kmp();
int now=fail[2*m];
// printf("now is %d\n",now);
while (now>=m) now=fail[now];
while (now)
{
// printf("Can %d\n",now);
a[x][y]+=pw[m-now];
now=fail[now];
}
}
a[x][n+1]=-pw[m]; a[x][n+2]=0;
} void Gauss()
{
F(i,1,n+1)
{
int tmp=i;
F(j,i+1,n+1) if (fabs(a[j][i])>fabs(a[i][i])) tmp=j;
if (tmp!=i) F(j,1,n+2) swap(a[i][j],a[tmp][j]);
F(j,1,n+1) if (j!=i)
{
double t=a[j][i]/a[i][i];
F(k,1,n+2) a[j][k]-=t*a[i][k];
}
// F(i,1,n+1){F(j,1,n+2)printf("%.3f ",a[i][j]);printf("\n");}
}
F(i,1,n+1) ans[i]=a[i][n+2]/a[i][i];
F(i,1,n) printf("%.10lf\n",ans[i]);
} int main()
{
// freopen("in.txt","r",stdin);
scanf("%d%d",&n,&m);
pw[0]=1;F(i,1,m)pw[i]=pw[i-1]*0.5;
F(i,1,n){scanf("%s",ss+1);F(j,1,m) s[i][j]=(ss[j]=='H');}
F(i,1,n) solve(i);
F(i,1,n) a[n+1][i]=1; a[n+1][n+2]=1;
// F(i,1,n+1){F(j,1,n+2)printf("%.3f ",a[i][j]);printf("\n");}
Gauss();
}
BZOJ 4820 [Sdoi2017]硬币游戏 ——期望DP 高斯消元的更多相关文章
- bzoj 4820: [Sdoi2017]硬币游戏【kmp+高斯消元】
有点神,按照1444的做法肯定会挂 注意到它的概率是相同的,所以可以简化状态 详见http://www.cnblogs.com/candy99/p/6701221.html https://www.c ...
- bzoj 3143 [Hnoi2013]游走 期望dp+高斯消元
[Hnoi2013]游走 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 3394 Solved: 1493[Submit][Status][Disc ...
- [BZOJ 4820] [SDOI2017] 硬币游戏(高斯消元+概率论+字符串hash)
[BZOJ 4820] [SDOI2017] 硬币游戏(高斯消元+概率论+字符串hash) 题面 扔很多次硬币后,用H表示正面朝上,用T表示反面朝上,会得到一个硬币序列.比如HTT表示第一次正面朝上, ...
- BZOJ_3143_[Hnoi2013]游走_期望DP+高斯消元
BZOJ_3143_[Hnoi2013]游走_期望DP+高斯消元 题意: 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机 ...
- BZOJ:4820: [Sdoi2017]硬币游戏&&BZOJ:1444: [Jsoi2009]有趣的游戏(高斯消元求概率)
1444: [Jsoi2009]有趣的游戏 4820: [Sdoi2017]硬币游戏 这两道题都是关于不断随机生成字符后求出现给定字符串的概率的问题. 第一题数据范围较小,将串建成AC自动机以后,以A ...
- BZOJ.4820.[SDOI2017]硬币游戏(思路 高斯消元 哈希/AC自动机/KMP)
BZOJ 洛谷 建出AC自动机,每个点向两个儿子连边,可以得到一张有向图.参照 [SDOI2012]走迷宫 可以得到一个\(Tarjan\)+高斯消元的\(O((nm)^3)\)的做法.(理论有\(6 ...
- BZOJ 3270 && BZOJ 1778 (期望DP && 高斯消元)
BZOJ 3270 :设置状态为Id(x,y)表示一人在x,一人在y这个状态的概率. 所以总共有n^2种状态. p[i]表示留在该点的概率,Out[i]=(1-p[i])/Degree[i]表示离开该 ...
- BZOJ.2707.[SDOI2012]走迷宫(期望 Tarjan 高斯消元)
题目链接 一个点到达终点的期望步数 \(E_i=\sum_{(i,j)\in G}\frac{E_j+1}{out[i]}\),\(out[i]\)为点\(i\)的出度. 那么对于一个DAG可以直接在 ...
- HDU 2262 Where is the canteen 期望dp+高斯消元
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=2262 Where is the canteen Time Limit: 10000/5000 MS ...
随机推荐
- MyEclipse7.0 M1下载和注册码
首先介绍下,这款MyEclipse7.0 M1已经内置了Eclipse3.4,所以无需再去下载. 1.下载地址: http://downloads.myeclipseide.com/downloads ...
- vue中的修饰符
Vue2.0学习笔记:Vue事件修饰符的使用 事件处理 如果需要在内联语句处理器中访问原生DOM事件.可以使用特殊变量$event,把它传入到methods中的方法中. 在Vue中,事件修饰符处理 ...
- 最全面的 python 字符串拼接总结(带注释版)
在 Python 中字符串连接有多种方式,这里简单做个总结,应该是比较全面的了,方便以后查阅. 加号连接 第一种,通过+号的形式: >>> a, b = 'hello', ' wor ...
- pysql用类进行封装
pyMySQL用类进行封装 class SqlHelper(object): def __init__(self): self.connect() def connect(self): self.co ...
- BCB:AnsiString BSTR WideString
WideString wstr;AnsiString astr;wchar_t *wp;//或者 BSTR wp; wp=wstr.c_bstr(); //WideString转化为BSTRwstr= ...
- 《队长说得队》【Alpha】Scrum meeting 5
项目 内容 这个作业属于哪个课程 >>2016级计算机科学与工程学院软件工程(西北师范大学) 这个作业的要求在哪里 >>实验十二 团队作业8:软件测试与ALPHA冲刺 团队名称 ...
- GitHub和码云的简单使用
年轻,又经历了初高大学的英语的纠缠,导致连最简单的语句都看不懂,我在慢慢寻找语言的快乐 GitHub 的简单使用 : https://www.cnblogs.com/zhcncn/p/3731707. ...
- javaweb基础(23)_jsp自定义标签
一.自定义标签的作用 自定义标签主要用于移除Jsp页面中的java代码. 二.自定义标签开发和使用 2.1.自定义标签开发步骤 1.编写一个实现Tag接口的Java类(标签处理器类) 1 packag ...
- presenting view controller
Present ViewController详解 Present ViewController Modally 一.主要用途 弹出模态ViewController是IOS变成中很有用的一个技术,UIK ...
- 【模拟】HHHOJ#251. 「NOIP模拟赛 伍」高精度
积累模拟经验 题目描述 维护一个二进制数,支持如下操作 "+" 该数加 11 "-" 该数减 11 "*" 该数乘 22 "\&q ...