做法太神了,理解不了。

自己想到的是建出AC自动机然后建出矩阵然后求逆计算,感觉可以过$40%$

用一个状态$N$表示任意一个位置没有匹配成功的概率和。

每种匹配不成功的情况都是等价的。

然后我们强制在后面加上长度为m的01串,那么这个串的概率是一定的。

然后考虑加上的这些字符还能拼成什么串,因为状态$N$的末尾是不确定的。

如果另外一个串的后缀等于这个串的前缀的话,是可能带来影响的。

所以计算出影响的概率,然后高斯消元即可。

然而有一个问题,N的概率最后消出来代表什么意思啊,是指期望的长度吗?

希望各位dalao不吝赐教。

#include <map>
#include <cmath>
#include <queue>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define F(i,j,k) for (int i=j;i<=k;++i)
#define D(i,j,k) for (int i=j;i>=k;--i)
#define ll long long
#define mp make_pair int n,m,s[305][305],str[605],fail[605];
char ss[305];
double a[305][305],pw[305],ans[305]; void kmp()
{
// F(i,1,2*m) printf("%d ",str[i]); printf("\n");
str[0]=-1;
memset(fail,0,sizeof fail);
for (int i=2,j=0;i<=2*m;++i)
{
while (j&&str[i]!=str[j+1]) j=fail[j];
if (str[j+1]==str[i]) j++;
fail[i]=j;
}
// F(i,1,2*m) printf("%d ",fail[i]);printf("\n");
} void solve(int x)
{
a[x][x]=1;F(i,1,m) str[i]=s[x][i];
F(y,1,n)// if (y!=x)
{
F(i,1,m) str[i+m]=s[y][i]; kmp();
int now=fail[2*m];
// printf("now is %d\n",now);
while (now>=m) now=fail[now];
while (now)
{
// printf("Can %d\n",now);
a[x][y]+=pw[m-now];
now=fail[now];
}
}
a[x][n+1]=-pw[m]; a[x][n+2]=0;
} void Gauss()
{
F(i,1,n+1)
{
int tmp=i;
F(j,i+1,n+1) if (fabs(a[j][i])>fabs(a[i][i])) tmp=j;
if (tmp!=i) F(j,1,n+2) swap(a[i][j],a[tmp][j]);
F(j,1,n+1) if (j!=i)
{
double t=a[j][i]/a[i][i];
F(k,1,n+2) a[j][k]-=t*a[i][k];
}
// F(i,1,n+1){F(j,1,n+2)printf("%.3f ",a[i][j]);printf("\n");}
}
F(i,1,n+1) ans[i]=a[i][n+2]/a[i][i];
F(i,1,n) printf("%.10lf\n",ans[i]);
} int main()
{
// freopen("in.txt","r",stdin);
scanf("%d%d",&n,&m);
pw[0]=1;F(i,1,m)pw[i]=pw[i-1]*0.5;
F(i,1,n){scanf("%s",ss+1);F(j,1,m) s[i][j]=(ss[j]=='H');}
F(i,1,n) solve(i);
F(i,1,n) a[n+1][i]=1; a[n+1][n+2]=1;
// F(i,1,n+1){F(j,1,n+2)printf("%.3f ",a[i][j]);printf("\n");}
Gauss();
}

  

BZOJ 4820 [Sdoi2017]硬币游戏 ——期望DP 高斯消元的更多相关文章

  1. bzoj 4820: [Sdoi2017]硬币游戏【kmp+高斯消元】

    有点神,按照1444的做法肯定会挂 注意到它的概率是相同的,所以可以简化状态 详见http://www.cnblogs.com/candy99/p/6701221.html https://www.c ...

  2. bzoj 3143 [Hnoi2013]游走 期望dp+高斯消元

    [Hnoi2013]游走 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 3394  Solved: 1493[Submit][Status][Disc ...

  3. [BZOJ 4820] [SDOI2017] 硬币游戏(高斯消元+概率论+字符串hash)

    [BZOJ 4820] [SDOI2017] 硬币游戏(高斯消元+概率论+字符串hash) 题面 扔很多次硬币后,用H表示正面朝上,用T表示反面朝上,会得到一个硬币序列.比如HTT表示第一次正面朝上, ...

  4. BZOJ_3143_[Hnoi2013]游走_期望DP+高斯消元

    BZOJ_3143_[Hnoi2013]游走_期望DP+高斯消元 题意: 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机 ...

  5. BZOJ:4820: [Sdoi2017]硬币游戏&&BZOJ:1444: [Jsoi2009]有趣的游戏(高斯消元求概率)

    1444: [Jsoi2009]有趣的游戏 4820: [Sdoi2017]硬币游戏 这两道题都是关于不断随机生成字符后求出现给定字符串的概率的问题. 第一题数据范围较小,将串建成AC自动机以后,以A ...

  6. BZOJ.4820.[SDOI2017]硬币游戏(思路 高斯消元 哈希/AC自动机/KMP)

    BZOJ 洛谷 建出AC自动机,每个点向两个儿子连边,可以得到一张有向图.参照 [SDOI2012]走迷宫 可以得到一个\(Tarjan\)+高斯消元的\(O((nm)^3)\)的做法.(理论有\(6 ...

  7. BZOJ 3270 && BZOJ 1778 (期望DP && 高斯消元)

    BZOJ 3270 :设置状态为Id(x,y)表示一人在x,一人在y这个状态的概率. 所以总共有n^2种状态. p[i]表示留在该点的概率,Out[i]=(1-p[i])/Degree[i]表示离开该 ...

  8. BZOJ.2707.[SDOI2012]走迷宫(期望 Tarjan 高斯消元)

    题目链接 一个点到达终点的期望步数 \(E_i=\sum_{(i,j)\in G}\frac{E_j+1}{out[i]}\),\(out[i]\)为点\(i\)的出度. 那么对于一个DAG可以直接在 ...

  9. HDU 2262 Where is the canteen 期望dp+高斯消元

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=2262 Where is the canteen Time Limit: 10000/5000 MS ...

随机推荐

  1. Cookie中存放数据l加密解密的算法

    public class CookieUtil { /** * * @param response HttpServletResponse类型的响应 * @param cookie 要设置httpOn ...

  2. 使用Electron开发PC客户端

    最近公司要求开发一个PC客户端,要求不能使用.NET开发(为了不让用户安装.net framework),所以就选择了Electron(随口听别人说了一句,之前从来没有接触过).目前项目要完毕了,所以 ...

  3. linux 下使用 curl 访问带多参数,GET掉参数解决方案

    url 为 http://mywebsite.com/index.php?a=1&b=2&c=3 web形式下访问url地址,使用 $_GET是可以获取到所有的参数 curl  -s  ...

  4. 关于flyme5显示不到和卸载不到旧应用解决方法

    笔者买入一台mx5,升级flyme5后旧应用没有显示出来,而且在设置的应用管理都没显示旧应用. 通过adb命令: adb shell pm list packages显示所有包名, 查看自己要删除应用 ...

  5. 基于Centos7.2搭建Cobbler自动化批量部署操作系统服务

    1       Cobbler服务器端系统环境配置 1.1     系统基本环境准备 [root@cobbler-server ~]# cat /etc/redhat-release CentOS L ...

  6. pyqt设计

    pyqt是python设计GUI的第三方包 作为一个小白,我觉得这篇博客贼好,我就是按照这个博客写的. 这个博客一共分5步,每一步都特别详细. pyqt 打包exe时遇到的问题(我的python环境是 ...

  7. manjaro kde tim QQ

    deepin-wine-tim

  8. MySQL迁移至MariaDB

    为什么要用MariaDB来代替MySQL MariaDB是MySQL社区开发的分支,也是一个增强型的替代品.它由MySQL前开发者们带头组织的基金会开发,使用起来和MySQL完全一样.自从Oracle ...

  9. POJ:1753-Flip Game(二进制+bfs)

    题目链接:http://poj.org/problem?id=1753 Flip Game Time Limit: 1000MS Memory Limit: 65536K Description Fl ...

  10. poj 2236 网络连接问题 并查集

    题意:n台电脑,当两台之间的距离小于d的时候可以连接. 题目会进行操作“修复”还有“查询是否已经连接”.只要在查询的时候输出YES或者ON 思路: 把可以相互连接的 即两者之间的距离小于 d  q[i ...