题目描述

输入

第一行包含两个整数N和 M, 表示该无向图中点的数目与边的数目。 接下来M 行描述 M 条边,每行三个整数Si,Ti ,Di,表示 Si 与Ti之间存在 一条权值为 Di的无向边。 图中可能有重边或自环。

输出

仅包含一个整数,表示最大的XOR和(十进制结果),注意输出后加换行回车。

样例输入

5 7
1 2 2
1 3 2
2 4 1
2 5 1
4 5 3
5 3 4
4 3 2

样例输出

6


题解

DFS树+高斯消元求线性基

首先肯定能够想到,1->n的路径一定是一条链+选择经过某些环。

那么我们只需要处理出链和环的异或和就可以了。

我们使用DFS树预处理,这样每一条返祖边就对应着一个环。

求出所有环以后,要求最大值,我们需要先对环的异或值求一下线性基,然后再贪心处理即可。

#include <cstdio>
#include <algorithm>
#define N 50010
#define M 200010
using namespace std;
typedef long long ll;
int head[N] , to[M] , tag[M] , next[M] , cnt = 1 , vis[N] , deep[N] , num;
ll len[M] , dis[N] , a[M];
void add(int x , int y , ll z)
{
to[++cnt] = y , len[cnt] = z , next[cnt] = head[x] , head[x] = cnt;
}
void dfs(int x)
{
int i;
vis[x] = 1;
for(i = head[x] ; i ; i = next[i])
if(!vis[to[i]])
dis[to[i]] = dis[x] ^ len[i] , deep[to[i]] = deep[x] + 1 , tag[i] = tag[i ^ 1] = 1 , dfs(to[i]);
}
int main()
{
int n , m , i , j , x , y , tot = 0;
ll d , z , ans;
scanf("%d%d" , &n , &m);
for(i = 1 ; i <= m ; i ++ ) scanf("%d%d%lld" , &x , &y , &z) , add(x , y , z) , add(y , x , z);
dfs(1);
for(x = 1 ; x <= n ; x ++ )
for(i = head[x] ; i ; i = next[i])
if(!tag[i] && deep[to[i]] < deep[x])
a[++num] = dis[to[i]] ^ dis[x] ^ len[i];
for(d = 1ll << 62 ; d ; d >>= 1)
{
for(j = ++tot ; j <= num ; j ++ )
{
if(a[j] & d)
{
swap(a[j] , a[tot]);
break;
}
}
if(j > num)
{
tot -- ;
continue;
}
for(j = 1 ; j <= num ; j ++ )
if(j != tot && a[j] & d)
a[j] ^= a[tot];
}
ans = dis[n];
for(i = 1 ; i <= tot ; i ++ )
if((ans ^ a[i]) > ans)
ans ^= a[i];
printf("%lld\n" , ans);
return 0;
}

【bzoj2115】[Wc2011] Xor DFS树+高斯消元求线性基的更多相关文章

  1. 【bzoj4269】再见Xor 高斯消元求线性基

    题目描述 给定N个数,你可以在这些数中任意选一些数出来,每个数可以选任意多次,试求出你能选出的数的异或和的最大值和严格次大值. 输入 第一行一个正整数N. 接下来一行N个非负整数. 输出 一行,包含两 ...

  2. HDU3949/AcWing210 XOR (高斯消元求线性基)

    求第k小的异或和,用高斯消元求更简单一些. 1 //用高斯消元求线性基 2 #include<bits/stdc++.h> 3 using namespace std; 4 #define ...

  3. 【bzoj3105】[cqoi2013]新Nim游戏 高斯消元求线性基

    题目描述 传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同).两个游戏者轮流操作,每次可以选一个火柴堆拿走若干根火柴.可以只拿一根,也可以拿走整堆火柴,但不能同时从 ...

  4. 【bzoj4004】[JLOI2015]装备购买 贪心+高斯消元求线性基

    题目描述 脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量zi(aj ,.....,am) 表示 (1 <= i <= n; 1 <= j < ...

  5. 【BZOJ2115】[Wc2011] Xor 高斯消元求线性基+DFS

    [BZOJ2115][Wc2011] Xor Description Input 第一行包含两个整数N和 M, 表示该无向图中点的数目与边的数目. 接下来M 行描述 M 条边,每行三个整数Si,Ti ...

  6. 【BZOJ2322】[BeiJing2011]梦想封印 高斯消元求线性基+DFS+set

    [BZOJ2322][BeiJing2011]梦想封印 Description 渐渐地,Magic Land上的人们对那座岛屿上的各种现象有了深入的了解. 为了分析一种奇特的称为梦想封印(Fantas ...

  7. 【BZOJ2460】[BeiJing2011]元素 贪心+高斯消元求线性基

    [BZOJ2460][BeiJing2011]元素 Description 相传,在远古时期,位于西方大陆的 Magic Land 上,人们已经掌握了用魔法矿石炼制法杖的技术.那时人们就认识到,一个法 ...

  8. 【BZOJ2844】albus就是要第一个出场 高斯消元求线性基

    [BZOJ2844]albus就是要第一个出场 Description 已知一个长度为n的正整数序列A(下标从1开始), 令 S = { x | 1 <= x <= n }, S 的幂集2 ...

  9. BZOJ 4269 高斯消元求线性基

    思路: 最大: 所有线性基异或一下 次大: 最大的异或一下最小的线性基 搞定~ //By SiriusRen #include <cstdio> #include <algorith ...

随机推荐

  1. HDU 5097 Page Rank (模拟)

    题目背景是以前用来对网页进行排名的Page Rank算法,是早期Google的革命性发明. 背后的原理是矩阵和图论.这个数学模型是由Google的创始人拉里·佩奇和谢尔盖·布林发现的. 如果一个网页被 ...

  2. [论文理解]Deep Residual Learning for Image Recognition

    Deep Residual Learning for Image Recognition 简介 这是何大佬的一篇非常经典的神经网络的论文,也就是大名鼎鼎的ResNet残差网络,论文主要通过构建了一种新 ...

  3. Win10激活方法(企业版)

    Win10激活 注意:以管理员身份运行,需要电脑有网(亲测激活企业版没问题) 然后一条一条复制执行 slmgr /ipk NPPR9-FWDCX-D2C8J-H872K-2YT43 slmgr /sk ...

  4. javaweb基础(12)_session详解

    一.Session简单介绍 在WEB开发中,服务器可以为每个用户浏览器创建一个会话对象(session对象),注意:一个浏览器独占一个session对象(默认情况下).因此,在需要保存用户数据时,服务 ...

  5. iOS开发之WIFI,3G/4G两种网络同时使用技巧

    最近遇到一个比较奇葩的需求:App与硬件通过WiFi LAN通信, 同时App需要与服务器通过3G/4G WAN通信,如下图: 众所周知,手机同时打开WiFi和3G时候,会优先走WiFi.这个该如何实 ...

  6. 【二分 最小割】cf808F. Card Game

    Digital collectible card games have become very popular recently. So Vova decided to try one of thes ...

  7. 基于Inception搭建MySQL SQL审核平台Yearing

    基于Inception搭建MySQL SQL审核平台Yearing Inception 1. Inceptionj简介 2. Inception安装 2.1 下载和编译 2.2 启动配置 Yearni ...

  8. 【Python学习之五】高级特性2(切片、迭代、列表生成器、生成器、迭代器)

    2.迭代 如果给定一个list或tuple,我们可以通过for循环来遍历这个list或tuple,这种遍历我们称为迭代(Iteration).在Python中,迭代是通过for ... in来完成的. ...

  9. ARM系统调用

    参考:Linux异常处理体系结构 linux系统调用表(system call table)  Arm Linux系统调用流程详细解析-SWI ARM系统调用是通过SWI异常处理函数实现的,这里简要概 ...

  10. LeetCode(138) Copy List with Random Pointer

    题目 A linked list is given such that each node contains an additional random pointer which could poin ...