群论 - Group Theory
群的定义
若非空集合\(G\)和定义在\(G\)上的二元运算\(⋅\)构成的代数结构\((G,⋅)\),满足:
- 封闭性:\(\forall a,b\in G\),有\(a⋅b\in G\)。
- 结合律:\(\forall a,b,c\in G\),有\((a⋅b)⋅c=a⋅(b⋅c)\)。
- 单位元:\(\exists e\in G\),满足\(\forall a\in G\)有\(a⋅e=a\)。
- 逆元:\(\forall a\in G\),\(\exists b\in G\)使得\(a⋅b=e\),记\(a^{-1}=b\)。
则代数结构\((G,⋅)\)是一个群(group)。
常见的群有:整数、有理理数、实数加法群;模\(n\)意义下的加法群;模\(n\)意义下与\(n\)互质的数构成的乘法群;置换群,群的元素是一个双射\(f\),运算为映射的复合。
拉格朗日定理
对于群\((G,⋅)\),若有\(G'\subset G\)且\((G',⋅)\)也是群,则有\(|G|\)是\(|G'|\)的倍数。
证明:
记\(G_a\)表示集合\(G\)的陪集\(\{x⋅a|x\in G\}\),那么易知\(|G_a|=|G|\)。
对于\(a,b\in G\),若有\(G'_a\cap G'_b \neq \emptyset\),则\(\exists x,y\in G'\)满足\(x⋅a=y⋅b ⇔ a=x^{-1}⋅y⋅b\)。
那么\(\forall z\in G'\),有\(z⋅a=z⋅(x^{-1}⋅y⋅b)=(z⋅x^{-1}⋅y)⋅b\)。易知\(z⋅x^{-1}⋅y \in G'\),所以\(G'_a\)中的每一个元素都存在于\(G'_b\)中,即\(G'_a=G'_b\)。
于是可知\(G'\)的陪集之间只有两种关系,互不相交或完全相同。而由于\(e\in G'\),所以\(G'\)的所有陪集的并就是\(G\)。又由于陪集的大小等于原集合,所以\(|G|\)是\(|G'|\)的倍数。
由拉格朗日定理可以推出欧拉定理\(a^{\varphi(m)} \equiv 1 \pmod m\)。
证明:
设集合\(S=\{a_1,a_2,...,a_{\varphi(n)}\}\),其中\(gcd(a_i,n)=1\)。\(S\)与模乘法形成的代数结构\((S,\times)\)是群。
那么设\(S_i=\{1,a_i,a_i^2,a_i^3...\}\),易知\((S_i,\times)\)是\((S,\times)\)的子群,即\(|S_i||\varphi(n)\)。而\(a_i^{|S_i|}\equiv 1\),所以\(a_i^{\varphi(n)}\equiv 1\)。
Burnside引理
如果对于\(x,y\in M\),\(∃f\in G\)使得\(f(x)=y\),那我们就称\(x\)和\(y\)是本质相同的。定义集合\(M\)关于置换群\(G\)的轨道数为\(M\)中本质不同的元素个数。
若对于\(x\in M\)和置换\(f\)有\(f(x)=x\),则称\(x\)是\(f\)的一个不动点。
集合\(M\)关于置换群\(G\)的轨道数,等于\(G\)中每个置换下不动点的个数的算术平均数。
Polya定理
每一个置换都可以表示成若干个轮换。轮换中的元素互相交换且不影响该轮换外的元素。例如\(f=\begin{pmatrix}1&2&3&4&5&6\\2&1&4&6&5&3\end{pmatrix}\)就是\(\{1,2\},\{3,4,6\},\{5\}\)的轮换,其轮换数为\(3\)。记\(c(f)\)为置换\(f\)的轮换数。
设\(G\)是\(n\)个对象的一个置换群,用\(m\)种颜色为这\(n\)个对象上色,则本质不同的染色方案数为\(\dfrac{\sum_{f\in G}m^{c(f)}}{|G|}\)。
其实Polya定理就相当于说置换\(f\)的不动点个数为\(m^{c(f)}\)。因为每个轮换必须填相同颜色才能在经过\(f\)后保持不变,所以不动点个数为\(m^{c(f)}\)。
群论 - Group Theory的更多相关文章
- Mathematics for Computer Graphics数学在计算机图形学中的应用 [转]
最近严重感觉到数学知识的不足! http://bbs.gameres.com/showthread.asp?threadid=10509 [译]Mathematics for Computer Gra ...
- How to do Mathematics
著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处.作者:匿名用户链接:http://www.zhihu.com/question/30087053/answer/47815698来源 ...
- Mathematics for Computer Graphics
Mathematics for Computer Graphics 最近严重感觉到数学知识的不足! http://bbs.gameres.com/showthread.asp?threadid=105 ...
- 采用梯度下降优化器(Gradient Descent optimizer)结合禁忌搜索(Tabu Search)求解矩阵的全部特征值和特征向量
[前言] 对于矩阵(Matrix)的特征值(Eigens)求解,采用数值分析(Number Analysis)的方法有一些,我熟知的是针对实对称矩阵(Real Symmetric Matrix)的特征 ...
- MIT一牛人对数学在机器学习中的作用给的评述
MIT一牛人对数学在机器学习中的作用给的评述 转载自http://my.oschina.net/feedao/blog/52252,不过这个链接也是转载的,出处已经无从考证了. 感觉数学似乎总是不 ...
- A Survey of Model Compression and Acceleration for Deep Neural Network时s
A Survey of Model Compression and Acceleration for Deep Neural Network时s 本文全面概述了深度神经网络的压缩方法,主要可分为参数修 ...
- <STL源码剖析> 6.3.6 power
计算power的算法说明 http://www.sxt.cn/u/324/blog/2112 翻译自 http://videlalvaro.github.io/2014/03/the-power-a ...
- Baby-step giant-step算法
写在前面: 学习笔记,方便复习,学习资料来自网络,注明出处 我们都在努力奔跑,我们都是追梦人 结论 In group theory, a branch of mathematics, the baby ...
- I am Nexus Master!(虽然只是个模拟题。。。但仍想了很久!)
I am Nexus Master! The 13th Zhejiang University Programming Contest 参见:http://www.bnuoj.com/bnuoj/p ...
随机推荐
- cluvfy stage命令用法
1.获取集群验证工具cluvfy的帮助信息 grid@rac1:/home/grid>cluvfy -help USAGE: cluvfy [ -help ] cluvfy stage { -l ...
- UVALive 4329 Ping pong (BIT)
枚举中间的人,只要知道在这个人前面的技能值比他小的人数和后面技能值比他小的人数就能计算方案数了,技能值大的可有小的推出. 因此可以利用树状数组,从左到右往树上插点,每个点询问sum(a[i]-1)就是 ...
- unbuntu&vim&Kali的各种小知识
1. vmware workstation 15.0.0 2.ubuntu-18.10-desktop 使用网络地址转换 VMware workstation 1.ctrl+alt 返回 unbu ...
- solver
slover中有type,用于优化算法的选择,有6种: Stochastic Gradient Descent (type: “SGD”), AdaDelta (type: “AdaDelta”), ...
- java基础—static关键字
一.static关键字
- 快速启动mongodb服务
在桌面创建一个mongodb.bat文件 输入以下内容: D:cd D:\mongodb\binstart mongod --dbpath D:\mongodb\data\dbcd D:\robot\ ...
- nginx下配置laravel+rewrite重写
server { listen ; server_name ha.d51v.cn; #access_log /data/wwwlogs/access_nginx.log combined; root ...
- 集群环境(session多服务器共享的方案梳理)
目前业界解决session共享的几种思路,我总结如下: 第一种办法:把原来存储在服务器磁盘上的session数据存储到客户端的cookie中去. 这样子,就不需要涉及到数据共享了.a客户端请求的时候, ...
- 02 Django模型
ORM 的作用 ORM 作用示意图 ORM 框架的功能 建立模型类和表之间的对应关系,允许通过面向对象的方式来操作数据库 根据设计的模型类生成数据库中的表格. 通过方便的配置就可以进行数据库的切换 数 ...
- nrf51822微信开发2:[转]airkiss/airsync介绍
"微信蓝牙"专题共分为8部分 1.airkiss/airsync介绍 2.eclipes的j2ee软件使用教程 3.微信公众号使用Dome(airkiss/airsync) 4.新 ...