群论 - Group Theory
群的定义
若非空集合\(G\)和定义在\(G\)上的二元运算\(⋅\)构成的代数结构\((G,⋅)\),满足:
- 封闭性:\(\forall a,b\in G\),有\(a⋅b\in G\)。
- 结合律:\(\forall a,b,c\in G\),有\((a⋅b)⋅c=a⋅(b⋅c)\)。
- 单位元:\(\exists e\in G\),满足\(\forall a\in G\)有\(a⋅e=a\)。
- 逆元:\(\forall a\in G\),\(\exists b\in G\)使得\(a⋅b=e\),记\(a^{-1}=b\)。
则代数结构\((G,⋅)\)是一个群(group)。
常见的群有:整数、有理理数、实数加法群;模\(n\)意义下的加法群;模\(n\)意义下与\(n\)互质的数构成的乘法群;置换群,群的元素是一个双射\(f\),运算为映射的复合。
拉格朗日定理
对于群\((G,⋅)\),若有\(G'\subset G\)且\((G',⋅)\)也是群,则有\(|G|\)是\(|G'|\)的倍数。
证明:
记\(G_a\)表示集合\(G\)的陪集\(\{x⋅a|x\in G\}\),那么易知\(|G_a|=|G|\)。
对于\(a,b\in G\),若有\(G'_a\cap G'_b \neq \emptyset\),则\(\exists x,y\in G'\)满足\(x⋅a=y⋅b ⇔ a=x^{-1}⋅y⋅b\)。
那么\(\forall z\in G'\),有\(z⋅a=z⋅(x^{-1}⋅y⋅b)=(z⋅x^{-1}⋅y)⋅b\)。易知\(z⋅x^{-1}⋅y \in G'\),所以\(G'_a\)中的每一个元素都存在于\(G'_b\)中,即\(G'_a=G'_b\)。
于是可知\(G'\)的陪集之间只有两种关系,互不相交或完全相同。而由于\(e\in G'\),所以\(G'\)的所有陪集的并就是\(G\)。又由于陪集的大小等于原集合,所以\(|G|\)是\(|G'|\)的倍数。
由拉格朗日定理可以推出欧拉定理\(a^{\varphi(m)} \equiv 1 \pmod m\)。
证明:
设集合\(S=\{a_1,a_2,...,a_{\varphi(n)}\}\),其中\(gcd(a_i,n)=1\)。\(S\)与模乘法形成的代数结构\((S,\times)\)是群。
那么设\(S_i=\{1,a_i,a_i^2,a_i^3...\}\),易知\((S_i,\times)\)是\((S,\times)\)的子群,即\(|S_i||\varphi(n)\)。而\(a_i^{|S_i|}\equiv 1\),所以\(a_i^{\varphi(n)}\equiv 1\)。
Burnside引理
如果对于\(x,y\in M\),\(∃f\in G\)使得\(f(x)=y\),那我们就称\(x\)和\(y\)是本质相同的。定义集合\(M\)关于置换群\(G\)的轨道数为\(M\)中本质不同的元素个数。
若对于\(x\in M\)和置换\(f\)有\(f(x)=x\),则称\(x\)是\(f\)的一个不动点。
集合\(M\)关于置换群\(G\)的轨道数,等于\(G\)中每个置换下不动点的个数的算术平均数。
Polya定理
每一个置换都可以表示成若干个轮换。轮换中的元素互相交换且不影响该轮换外的元素。例如\(f=\begin{pmatrix}1&2&3&4&5&6\\2&1&4&6&5&3\end{pmatrix}\)就是\(\{1,2\},\{3,4,6\},\{5\}\)的轮换,其轮换数为\(3\)。记\(c(f)\)为置换\(f\)的轮换数。
设\(G\)是\(n\)个对象的一个置换群,用\(m\)种颜色为这\(n\)个对象上色,则本质不同的染色方案数为\(\dfrac{\sum_{f\in G}m^{c(f)}}{|G|}\)。
其实Polya定理就相当于说置换\(f\)的不动点个数为\(m^{c(f)}\)。因为每个轮换必须填相同颜色才能在经过\(f\)后保持不变,所以不动点个数为\(m^{c(f)}\)。
群论 - Group Theory的更多相关文章
- Mathematics for Computer Graphics数学在计算机图形学中的应用 [转]
最近严重感觉到数学知识的不足! http://bbs.gameres.com/showthread.asp?threadid=10509 [译]Mathematics for Computer Gra ...
- How to do Mathematics
著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处.作者:匿名用户链接:http://www.zhihu.com/question/30087053/answer/47815698来源 ...
- Mathematics for Computer Graphics
Mathematics for Computer Graphics 最近严重感觉到数学知识的不足! http://bbs.gameres.com/showthread.asp?threadid=105 ...
- 采用梯度下降优化器(Gradient Descent optimizer)结合禁忌搜索(Tabu Search)求解矩阵的全部特征值和特征向量
[前言] 对于矩阵(Matrix)的特征值(Eigens)求解,采用数值分析(Number Analysis)的方法有一些,我熟知的是针对实对称矩阵(Real Symmetric Matrix)的特征 ...
- MIT一牛人对数学在机器学习中的作用给的评述
MIT一牛人对数学在机器学习中的作用给的评述 转载自http://my.oschina.net/feedao/blog/52252,不过这个链接也是转载的,出处已经无从考证了. 感觉数学似乎总是不 ...
- A Survey of Model Compression and Acceleration for Deep Neural Network时s
A Survey of Model Compression and Acceleration for Deep Neural Network时s 本文全面概述了深度神经网络的压缩方法,主要可分为参数修 ...
- <STL源码剖析> 6.3.6 power
计算power的算法说明 http://www.sxt.cn/u/324/blog/2112 翻译自 http://videlalvaro.github.io/2014/03/the-power-a ...
- Baby-step giant-step算法
写在前面: 学习笔记,方便复习,学习资料来自网络,注明出处 我们都在努力奔跑,我们都是追梦人 结论 In group theory, a branch of mathematics, the baby ...
- I am Nexus Master!(虽然只是个模拟题。。。但仍想了很久!)
I am Nexus Master! The 13th Zhejiang University Programming Contest 参见:http://www.bnuoj.com/bnuoj/p ...
随机推荐
- CSS选择器基本介绍
一.web标准 所谓的web标准就是用来衡量我们当前的网页书写是否规范的一系列要求,这个标准是由W3C组织制定,在web标准中具体的要求就是结构.样式.行为三者相分离 结构:通过HTML标签来搭建的网 ...
- windows自定义快速启动(运行)命令
自定义运行(windows键+R)里面命令,启动设置的程序,如图: 它的设置方法有两种: 第一种设置方法: 第1步:在任意地方创建一个文件夹(建议在D盘根目录创建),文件夹的名称可自定义没有特殊限制, ...
- JSONPath - XPath for JSON
http://goessner.net/articles/JsonPath/ [edit] [comment] [remove] |2007-02-21| e1 # JSONPath - XPath ...
- 【转】实用API大全
有道翻译APIhttp://fanyi.youdao.com/openapi有道翻译API支持中英互译,同时获得有道翻译结果和有道词典结果(可能没有),返回格式为XML或JSON. 百度翻译APIht ...
- C++利用偏移量对文件操作
对输入流操作:seekg()与tellg()对输出流操作:seekp()与tellp()下面以输入流函数为例介绍用法: seekg()是对输入文件定位,它有两个参数:第一个参数是偏移量,第二个参数是基 ...
- Java中List集合排序的方法 比较器的使用 根据学生对象数学 语文 英语成绩总和进行sort排序
package com.swift; import java.util.ArrayList; import java.util.Collections; import java.util.Compar ...
- 【MySql】Mysql ERROR 1067: Invalid default value for ‘date’ 解决
在给一个表添加字段的时候,忽然发现会报一个date类型的字段的默认值错误,郁闷~ 经过排查,原来是MySQL的配置问题,在wamp下,MySQL 5.7里是没有设置 SQL_MODE 的. 1.my. ...
- 如何使用 HTML5 的picture元素处理响应式图片
来自: http://www.w3cplus.com/html5/quick-tip-how-to-use-html5-picture-for-responsive-images.html 图片在响应 ...
- CSS清除浮动8大方法
CSS清除浮动是每一位web前端工程师都要掌握的技术,也是让每一位刚入门的前端工程师感到头疼的问题, 下面就来讲一下CSS清除浮动的原理和各种解决方法,大家可以根据实际情况选择最佳的解决方案. 在用D ...
- Python中类的声明,使用,属性,实例属性,计算属性及继承,重写
Python中的类的定义以及使用: 类的定义: 定义类 在Python中,类的定义使用class关键字来实现 语法如下: class className: "类的注释" 类的实体 ...