题目大意:n*m的格子,从左上角走到右下角,每个格子只能走一遍,每个格子上有一个非负数,要让途径的数字和最大,最后要输出路径

思路:显然茹果n,m有一个是奇数的话所有格子的数字都能被我吃到,如果都是偶数呢?我把棋盘黑白染色,显然其中染成黑色的点我都是能不取一个,剩下的点我每个都取.

比赛的时候gkp说能不能取两个白色的块反而比只取一个黑色块结果大,想了下是不会的,证明很简单,n,m都是偶数那么黑色块和白色快的数量是相同的,每次只能上下左右走,也就是只能从一个颜色走到另一个颜色,如果能够避开两块或者更多的黑块而不经过白块,那么经过格子的路线必然不能能出现黑白黑白的序列,发现这个后证实了我的想法,比赛时CP敲了这题的代码,下面是我赛后AC的

 #include<iostream>
#include<cstdio>
#include<cstring>
#define maxn 5000009
#define ll long long
using namespace std;
const int dx[]={,,,,-};
const int dy[]={,,-,,};
const char di[]={'','R','L','D','U'};
int a[][],n,m,d=,visit[][];
void dfs(int x,int y,int l,int r,int xt,int yt)
{
if(x==n && y==r)return;
d = (d%)+;
visit[x][y] = ;
for(int i=;i<=;i++)
{
int xx = x + dx[i], yy = y + dy[i];
if(xx<||xx>n||visit[xx][yy]||yy<l || yy > r ||(xx==xt && yy == yt))continue;
printf("%c",di[i]);
dfs(xx,yy,l,r,xt,yt);
d = i;
break;
}
}
int main()
{
while(scanf("%d%d",&n,&m)!=EOF)
{
memset(visit,,sizeof(visit));
int sum = ;
for(int i=;i<=n;i++)
{
for(int j=;j<=m;j++)
{
scanf("%d",&a[i][j]);
sum += a[i][j];
}
}
if(n&)
{
printf("%d\n",sum);
int u = (n-)>>;
while(u--)
{
for(int i=;i<m;i++)printf("R");
printf("D");
for(int i=;i<m;i++)printf("L");
printf("D");
}
for(int i=;i<m;i++)printf("R");
puts("");
}
else if(m&)
{
printf("%d\n",sum);
int u = (m-)>>;
while(u--)
{
for(int i=;i<n;i++)printf("D");
printf("R");
for(int i=;i<n;i++)printf("U");
printf("R");
}
for(int i=;i<n;i++)printf("D");
puts("");
}
else
{
int x=,y=,minx = 0x3f3f3f3f;
for(int i=;i<=n;i++)
{
for(int j=;j<=m;j++)if((i+j)&)
{
if(minx>a[i][j])
{
minx=a[i][j];
x=i;
y=j;
}
}
}
printf("%d\n",sum-minx);
int u = (y-)>>,t=u;
while(t--)
{
for(int i=;i<n;i++)printf("D");
printf("R");
for(int i=;i<n;i++)printf("U");
printf("R");
}
d=;
dfs(,u*+,u*+,u*+,x,y);
int v = m-u*-;
v>>=;t=v;
while(t--)
{
printf("R");
for(int i=;i<n;i++)printf("U");
printf("R");
for(int i=;i<n;i++)printf("D");
}
puts("");
}
}
return ;
}

HDU 5402 : Travelling Salesman Problem的更多相关文章

  1. 构造 - HDU 5402 Travelling Salesman Problem

    Travelling Salesman Problem Problem's Link: http://acm.hdu.edu.cn/showproblem.php?pid=5402 Mean: 现有一 ...

  2. HDU 5402 Travelling Salesman Problem (构造)(好题)

    大致题意:n*m的非负数矩阵,从(1,1) 仅仅能向四面走,一直走到(n,m)为终点.路径的权就是数的和.输出一条权值最大的路径方案 思路:因为这是非负数,要是有负数就是神题了,要是n,m中有一个是奇 ...

  3. HDU 5402 Travelling Salesman Problem (模拟 有规律)(左上角到右下角路径权值最大,输出路径)

    Travelling Salesman Problem Time Limit: 3000/1500 MS (Java/Others)    Memory Limit: 65536/65536 K (J ...

  4. HDU 5402 Travelling Salesman Problem(棋盘染色 构造 多校啊)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5402 Problem Description Teacher Mai is in a maze wit ...

  5. HDU 5402 Travelling Salesman Problem(多校9 模拟)

    题目链接:pid=5402">http://acm.hdu.edu.cn/showproblem.php?pid=5402 题意:给出一个n×m的矩阵,位置(i.j)有一个非负权值. ...

  6. hdu 5402 Travelling Salesman Problem(大模拟)

    Problem Description Teacher Mai ,) to the bottom right corner (n,m). He can choose one direction and ...

  7. hdu 5402 Travelling Salesman Problem (技巧,未写完)

    题意:给一个n*m的矩阵,每个格子中有一个数字,每个格子仅可以走一次,问从(1,1)走到(n,m) 的路径点权之和. 思路: 想了挺久,就是有个问题不能短时间证明,所以不敢下手. 显然只要n和m其中一 ...

  8. HDU 5402(Travelling Salesman Problem-构造矩阵对角最长不相交路径)

    Travelling Salesman Problem Time Limit: 3000/1500 MS (Java/Others)    Memory Limit: 65536/65536 K (J ...

  9. HDOJ 5402 Travelling Salesman Problem 模拟

    行数或列数为奇数就能够所有走完. 行数和列数都是偶数,能够选择空出一个(x+y)为奇数的点. 假设要空出一个(x+y)为偶数的点,则必须空出其它(x+y)为奇数的点 Travelling Salesm ...

随机推荐

  1. Ajax获取服务器响应头部信息

    $.ajax({ type: 'HEAD', // 获取头信息,type=HEAD即可 url : window.location.href, complete: function( xhr,data ...

  2. JavaScript onkeydown事件入门实例(键盘某个按键被按下)

    JavaScript onkeydown 事件 用户按下一个键盘按键时会触发 onkeydown 事件.与 onkeypress事件不同的是,onkeydown 事件是响应任意键按下的处理(包括功能键 ...

  3. SC || Chapter7 健壮性和正确性

    finally中语句不论有无异常都执行 若子类重写了父类方法,父类方法没有抛出异常,子类应自己处理全部异常而不再传播:子类从父类继承的方法不能增加或更改异常 判断checked和unchecked: ...

  4. 计算机视觉2D几何基元及其变换介绍和OpenCV WarpPerspective源码分析

    2D图像几何基元 一般的,表示一个2d几何基元只用两个维度(比如x,y)就可以表示了,但是在计算机视觉研究中,为了统一对2d几何基元的操作(后面讲到的仿射,透射变换),一般会以增广矢量的方式表示几何基 ...

  5. java从键盘输入三个整数,实现从小到大排序

    package study01; import java.util.Scanner; public class Sort { /** * 需求:由键盘输入三个整数分别存入变量a.b.c,对他们进行 排 ...

  6. oracle centos 重启后报错ORA-12514, TNS:listener does not currently know of service requested in connect descriptor

    oracle centos 重启后报错ORA-12514, TNS:listener does not currently know of service requested in connect d ...

  7. oc 数据类型转换

    NSNumber转NSString: 假设现有一NSNumber的变量A,要转换成NSString类型的B 方法如下: NSNumberFormatter* numberFormatter = [[N ...

  8. vector总结(更新中。。。)

    vector中这两个属性很容易弄混淆. size是当前vector容器真实占用的大小,也就是容器当前拥有多少个容器. capacity是指在发生realloc前能允许的最大元素数,即预分配的内存空间. ...

  9. Matlab-plot绘图

    plot函数 形式 字符控制 常用的图形标记函数 subplot命令拆分窗口 其他常见命令 三维绘图plot3 mesh和contour命令 plot函数 形式 plot(a,'-s')如果a是实数矩 ...

  10. vc文件操作汇总—支持wince

    一.判断文件及文件夹是否存在 // 判断文件是否存在 BOOL IsFileExist(const CString& csFile) { DWORD dwAttrib = GetFileAtt ...