一、前言

上篇认真的分析了在JDK7下的HashMap, 如果还没看过的或者忘记了的可以先去回顾下,这样可以更好的了解JDK8下的HashMap基于JDK7做了什么改动。分析JDK8下的HashMap 主要是因为JDK8在目前使用已成主流,且其在某些性能程度远远大于JDK7。下面逐一分析。
 

二、内部结构

其实大部分结构跟JDK7是一样的, 比如是基于数组+链表的形式构成的。下面主要分析下引入新的变量或者有改变的:

2.1 容器:数组

transient Node<K,V>[] table;
数组类名有变化,JDK7下是Entry, 但是其内部结果没有改变,Node的内部结构如下:

2.2 链表转树形的阈值

// 表示如果某条链表的节点数量大于等于这个值的时候,则将其转化为树形结构。
static final int TREEIFY_THRESHOLD = 8;

2.3 树形转链表的阈值

// 如果树的节点小于等于阈值的时候就开始转换成链表
static final int UNTREEIFY_THRESHOLD = 6;

2.4 容器可以树化的最小容量

// 由于有这个限制,会使第一个值在满足这个条件时才会生效,具体看后面解释
static final int MIN_TREEIFY_CAPACITY = 64;

2.5 树节点类

static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {
TreeNode<K,V> parent; // red-black tree links . 可以理解为红黑树
TreeNode<K,V> left; // 左节点
TreeNode<K,V> right; // 右节点
TreeNode<K,V> prev; // needed to unlink next upon deletion
boolean red; // 区分是否为红节点
TreeNode(int hash, K key, V val, Node<K,V> next) {
super(hash, key, val, next);
}
...
}

2.6 总结

从上面看,HashMap在JDK8的内存结构还是有些变化的,当满足某些条件时链表会转化为红黑树。所以在JDK8下HashMap的内存结构应该是:数组+链表+红黑树, 结构示意图如下:

下面通过几个重要的函数看下它是什么时候开始转红黑树的。

三、put函数

public V put(K key, V value) {
// 内部做事情的还是putVal函数
return putVal(hash(key), key, value, false, true);
}
先看下hash函数有什么变化,如下:与JDK7版本对比,这里简化了很多。
static final int hash(Object key) {
int h;
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
接下来看重点putVal()函数:

final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
// table为空,则通过扩容来创建,后面在看扩容函数
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
// 根据key的hash值 与 数组长度进行取模来得到数组索引
if ((p = tab[i = (n - 1) & hash]) == null)
// 空链表,创建节点
tab[i] = newNode(hash, key, value, null);
else {
Node<K,V> e; K k;
// 不为空,则判断是否与当前节点一样,一样就进行覆盖
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
else if (p instanceof TreeNode)
// 不存在重复节点,则判断是否属于树节点,如果属于树节点,则通过树的特性去添加节点
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
else {
// 该链为链表
for (int binCount = 0; ; ++binCount) {
// 当链表遍历到尾节点时,则插入到最后 -> 尾插法
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
// 检测是否该从链表变成树(注意:这里是先插入节点,没有增加binCount,所以判断条件是大于等于阈值-1)
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
// 满足则树形化
treeifyBin(tab, hash);
break;
}
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
} // 存在相同的key,则替换value
if (e != null) { // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
// 注意这里,这里是供子类LinkedHashMap实现
afterNodeAccess(e);
return oldValue;
}
}
++modCount;
// 注意细节:先加入节点,再加长度与阈值进行判断,是否需要扩容。
if (++size > threshold)
resize();
// 注意这里,这里是供子类LinkedHashMap实现
afterNodeInsertion(evict);
return null;
}
总结下:
  1. 先会判断数组是否为空,如果为空则通过扩容函数来创建
  2. 根据key的哈希值与数组长度取模获取索引,对应节点为空则直接创建节点
  3. 如果对应节点不为空,先判断是否与插入元素相等,如果相等则进行替换;不想等继续判断.
  4. 判断获取的节点是否是树形节点,如果是则通过树形节点添加元素;
  5. 如果不是树形节点, 则一定是链表。然后遍历链表至最后一个节点,将节点添加至链尾。如果当前链表的数量(没有算新插入节点)大于等于转换树形的阈值-1,则需要将该链表进行树形转换。
  6. 插入节点后,长度+1; 然后判断是否大于阈值进行扩容操作。

四、resize函数

看了下注释:resize()方法主要用于初始化或者扩容。其实我们从putVal()方法中就能看出来了,下面详细看下:

final Node<K,V>[] resize() {
// copy 数组、容量、阈值
Node<K,V>[] oldTab = table;
int oldCap = (oldTab == null) ? 0 : oldTab.length;
int oldThr = threshold;
int newCap, newThr = 0;
// 判断旧容量是否大于0
if (oldCap > 0) {
// 超过最大值就不再扩充
if (oldCap >= MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return oldTab;
}
// 没超过最大值,就扩充为原来的 2 倍
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)
newThr = oldThr << 1; // double threshold
}
else if (oldThr > 0) // initial capacity was placed in threshold
// 如果旧容量小于等于0 and 旧阈值大于0, 则将旧阈值赋给新容量
newCap = oldThr;
else { // zero initial threshold signifies using defaults
// 否则都使用默认值
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
if (newThr == 0) {
// 如果新的阈值是 0,对应的是当前表是空的. 根据新的容量和加载因子计算新的阈值
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
// 更新阈值
threshold = newThr;
@SuppressWarnings({"rawtypes","unchecked"})
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
table = newTab; // 下面开始将当前哈希桶中的所有节点转移到新的哈希桶中
if (oldTab != null) {
for (int j = 0; j < oldCap; ++j) {
Node<K,V> e;
// 遍历每个位置,将元素赋值给e
if ((e = oldTab[j]) != null) {
// 置空原来元素,方便GC回收
oldTab[j] = null;
if (e.next == null)
// 当前就一个元素,直接定位到下标
newTab[e.hash & (newCap - 1)] = e;
else if (e instanceof TreeNode)
// 如果是树节点,则通过树形节点去拆分
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
else { // preserve order
// 高效之处
// 利用哈希值的高低位去区分存储位置,如果高位是0,则存储在原来的位置;如果是1则存储在原来位置+oldCap。
// 低位链表的头结点、尾节点
Node<K,V> loHead = null, loTail = null;
// 高位链表的头节点、尾节点
Node<K,V> hiHead = null, hiTail = null;
Node<K,V> next;
do {
next = e.next;
// 低位链表
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}
// 高位链表
else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
// 将低位链表存放在原索引处
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
// 将高位链表存放在 原索引+oldCap
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab;
}
总结:
  1. 如果原数组为空,则需要初始化;如果不为空则扩容,容量为原来的两倍。然后更新阈值
  2. 遍历原数组中的元素,将其添加至新数组中:
    • 如果当前节点只有一个节点时,则根据其hash值与新容量-1进行取模操作取得下标,将元素添加到此位置上。
    • 如果当前节点是树节点,则需要根据树形节点特性进行调整。
    • 如果当前节点是链表,则根据节点的hash值与原容量进行高位判断,如果是0则添加到新数组上的原索引位置上;如果是1,则添加至新数组的原索引+原容量的位置上。
举例说明:假设原容量为16,索引下标为10的位置上存在链表且有两个节点,将设第一个节点的hash值为10,第二个的hash值为26。此时进行扩容操作的时候新容量变成32,
当我们操作索引下标为10的链表时,按照取模的算法,第一个节点:10&(32-1) = 10,定位在原来索引位置上;第二个节点:26&(32-1) = 26定位到索引下标为26的位置上。该位置=原索引+原容量。所以该处用的很巧妙。

五、treeifyBin函数

final void treeifyBin(Node<K,V>[] tab, int hash) {
int n, index; Node<K,V> e;
// 会判断数组长度是否大于最小树化容量,如果不大于先进行扩容减少冲突。
if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
resize();
else if ((e = tab[index = (n - 1) & hash]) != null) {
TreeNode<K,V> hd = null, tl = null;
do {
TreeNode<K,V> p = replacementTreeNode(e, null);
if (tl == null)
hd = p;
else {
p.prev = tl;
tl.next = p;
}
tl = p;
} while ((e = e.next) != null);
if ((tab[index] = hd) != null)
hd.treeify(tab);
}
}
这里单独提出来分析,是为了说明当某链表节点大于等于8时并不一定会树化,还要判断当前容量是否大于最小树化的容量。如果小于的话是不会进行树化,而是通过扩容来减少冲突。
 

六、两个版本对比

  1. 底层数据结构有变化。
    • JDK7:数组+链表。在极端的情况下会形成一条单链表,那么它的查找时间复杂度会达到O(n)。
    • JDK8: 数组+链表+红黑树。 当容量超过最小树化容量64时,如果存在链表节点大于等于8时就会树化,形成红黑树(类似平衡查找二叉树)。所以最坏的情况下的查找时间复杂度为O(logN). 比JDK7效率要好。
2. 计算Hash值的计算方式JDK8比JDK7要简化。所以数据量大时也会有明显的差异。
3. 当hash冲突时,插入链表不一样:JDK7是头插法(同索引下的节点顺序相反),JDK8是尾插法(同索引下的节点顺序不变)。
4. 扩容途径JDK8比JDK7多一种。JDK8多一种:当某链表长度大于等于8且当前容量还没达到树化容量时,会进行扩容减少冲突。
5. 扩容的具体操作不一样,JDK8要优于JDK7。 JDK7需要重新进行 索引下标 的计算,而 JDK8 不需要,通过判断高位(与原容量比较)是 0 还是 1,要么依旧是原 index,要么是 oldCap + 原 index。
6. JDK8下的HashMap不会产生死循环。但依然是线程不安全的。
通过上面对比,赶紧去升级JDK版本吧。HashMap的性能提升仅仅是JDK1.8的冰山一角。

JDK8下的HashMap有什么特别之处?的更多相关文章

  1. 高性能场景下,HashMap的优化使用建议

    1. HashMap 在JDK 7 与 JDK8 下的差别 顺便理一下HashMap.get(Object key)的几个关键步骤,作为后面讨论的基础. 1.1 获取key的HashCode并二次加工 ...

  2. JVM源码分析之JDK8下的僵尸(无法回收)类加载器[z]

    [z]http://lovestblog.cn/blog/2016/04/24/classloader-unload/ 概述 这篇文章基于最近在排查的一个问题,花了我们团队不少时间来排查这个问题,现象 ...

  3. 2020-04-22:谈谈JDK1.8下的HashMap在并发情况下链表成环的过程。(挖)

    福哥答案2020-04-22: jdk1.8下的hashmap采用的是尾插法,不会有链表成环的问题.jdk1.7下采用的头插***有链表成环的问题. hashmap成环原因的代码出现在transfer ...

  4. Lua语言的特别之处

    所谓特别,是相对的,是相对别的主流语言而言,有些也可能只是我个人看法. 1. 函数定义与调用,与代码位置的先后顺序有关,例如 calculate() function calculate() .... ...

  5. 实例句柄0x10000000有什么特别之处?What is so special about the instance handle 0x10000000?

    当Load­Library函数返回特殊值时,客户想知道它意味着什么0x10000000.嗯,这意味着LIB被加载进了0x10000000?好的,这里有一些更多的信息:“我们正在尝试调试一个加载DLL的 ...

  6. JDK8下Object类源码理解

    JDK8中Object类提供的方法: package java.lang; /** * Class {@code Object} is the root of the class hierarchy. ...

  7. JDK8中的HashMap源码

    背景 很久以前看过源码,但是猛一看总感觉挺难的,很少看下去.当时总感觉是水平不到.工作中也遇到一些想看源码的地方,但是遇到写的复杂些的心里就打退堂鼓了. 最近在接手同事的代码时,有一些很长的pytho ...

  8. 多线程下的HashMap竟然绕环了

    导读:早就听说过HashMap不是线程安全的,在多线程情况下可能会出问题,自己一直是一知半解,正好五一有时间就抽时间来研究一下. 关键词:线程安全,HashMap 直接上图 总结 看过的知识点不一定属 ...

  9. 2、JDK8中的HashMap实现原理及源码分析

    本篇提纲.png 本篇所述源码基于JDK1.8.0_121 在写上一篇线性表的文章的时候,笔者看的是Android源码中support24中的Java代码,当时发现这个ArrayList和Linked ...

随机推荐

  1. PHP函数---$_Get()和$_Post()的用法

    一.$_Get()和$_Post()函数是用来传值的,即对应两种提交表单的方法,get和post. 二.$_Get方法 (1)获取通过URL的传值 Example 1 新建两个PHP文件,1.php, ...

  2. Redis多个数据库

    注意:Redis支持多个数据库,并且每个数据库的数据是隔离的不能共享,并且基于单机才有,如果是集群就没有数据库的概念. Redis是一个字典结构的存储服务器,而实际上一个Redis实例提供了多个用来存 ...

  3. Spring之二:Spring AOP概述

    一.AOP概念回顾 AOP是Aspect-Oriented Programming(面向方面编程)的简称, 虽然可以利用面向对象的方法可以很好地组织代码,也可以通过继承关系实现代码重用,但是程序中总是 ...

  4. warning: conflicting types for built-in function 'puts'

    warning: conflicting types for built-in function 'puts' [编译器版本] arm-linux-gcc 3.4.1 [问题描述] 在做嵌入式底层开发 ...

  5. XJar: Spring-Boot JAR 包加/解密工具,避免源码泄露以及反编译

    XJar: Spring-Boot JAR 包加/解密工具,避免源码泄露以及反编译 <?xml version="1.0" encoding="UTF-8" ...

  6. Auto Layout Guide----(三)-----Anatomy of a Constraint

    Anatomy of a Constraint 剖析约束 The layout of your view hierarchy is defined as a series of linear equa ...

  7. ASP.NET Core会议管理平台实战_4、参数校验、操作结果封装,注册参数配置

    登陆和注册之前,需要封装 前端参数的校验,ajax的封装 参数校验,创建公共的类 ,它是一个静态类 这样在调用的时候,直接一句话就可以了,这就是封装的好处 空字符串的校验 调用方式 EF的源码里面有这 ...

  8. WebView根据加载的内容来控制其高度

    一.先设置WebView的高度为0,然后在其加载结束后的代理方法中根据contentSize设置其高度 //初始话一个UIWebView: self.webView = [[[UIWebView al ...

  9. CSS 定位 (Positioning)概述

    div.h1 或 p 元素常常被称为块级元素. 这意味着这些元素显示为一块内容,即“块框”. 与之相反,span 和 strong 等元素称为“行内元素”,这是因为它们的内容显示在行中,即“行内框”. ...

  10. ue4 模拟tween

    timeline的设置,注意timeLine可以使用外部的曲线,这个比较方便做各种曲线,timeline内部只适合打单个点