A - Drainage Ditches

Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u

 

Description

Every time it rains on Farmer John's fields, a pond forms over Bessie's favorite clover patch. This means that the clover is covered by water for awhile and takes quite a long time to regrow. Thus, Farmer John has built a set of drainage ditches so that Bessie's clover patch is never covered in water. Instead, the water is drained to a nearby stream. Being an ace engineer, Farmer John has also installed regulators at the beginning of each ditch, so he can control at what rate water flows into that ditch. 
Farmer John knows not only how many gallons of water each ditch can transport per minute but also the exact layout of the ditches, which feed out of the pond and into each other and stream in a potentially complex network. 
Given all this information, determine the maximum rate at which water can be transported out of the pond and into the stream. For any given ditch, water flows in only one direction, but there might be a way that water can flow in a circle. 
 

Input

The input includes several cases. For each case, the first line contains two space-separated integers, N (0 <= N <= 200) and M (2 <= M <= 200). N is the number of ditches that Farmer John has dug. M is the number of intersections points for those ditches. Intersection 1 is the pond. Intersection point M is the stream. Each of the following N lines contains three integers, Si, Ei, and Ci. Si and Ei (1 <= Si, Ei <= M) designate the intersections between which this ditch flows. Water will flow through this ditch from Si to Ei. Ci (0 <= Ci <= 10,000,000) is the maximum rate at which water will flow through the ditch. 
 

Output

For each case, output a single integer, the maximum rate at which water may emptied from the pond. 
 

Sample Input

5 4
1 2 40
1 4 20
2 4 20
2 3 30
3 4 10
 

Sample Output

50
 
 
题意: 给一个有向有环图,给出每条边到容量上限,无下限,源点是1,汇点是n,求最大流。赤裸裸点网络流,我用的ISAP算法。第一次过点网络流^_^
 
思路: ISAP模板过。白书上没给ISAP的BFS。。搞了好久才知道怎么改。。
 
代码
 
#include <vector>
#include <cstdio>
#include <cstring>
#include <queue>
#define FOR(i,n) for(i=1;i<=(n);i++)
using namespace std;
const int INF = 2e9+;
const int N = ; struct Edge{
int from,to,cap,flow;
}; struct ISAP{
int n,m,s,t;
int p[N],num[N];
vector<Edge> edges;
vector<int> G[N];
bool vis[N];
int d[N],cur[N];
void init(int _n,int _m)
{
n=_n; m=_m;
int i;
edges.clear();
FOR(i,n)
{
G[i].clear();
d[i]=INF;
}
}
void AddEdge(int from,int to,int cap)
{
edges.push_back((Edge){from,to,cap,});
edges.push_back((Edge){to,from,,});
m = edges.size();
G[from].push_back(m-);
G[to].push_back(m-);
}
bool BFS()
{
memset(vis,,sizeof(vis));
queue<int> Q;
Q.push(t);
d[t]=;
vis[t]=;
while(!Q.empty())
{
int x = Q.front(); Q.pop();
for(unsigned i=;i<G[x].size();i++)
{
Edge& e = edges[G[x][i]^];
if(!vis[e.from] && e.cap>e.flow)
{
vis[e.from]=;
d[e.from] = d[x]+;
Q.push(e.from);
}
}
}
return vis[s];
}
int Augment()
{
int x=t, a=INF;
while(x!=s)
{
Edge& e = edges[p[x]];
a = min(a,e.cap-e.flow);
x = edges[p[x]].from;
}
x = t;
while(x!=s)
{
edges[p[x]].flow+=a;
edges[p[x]^].flow-=a;
x=edges[p[x]].from;
}
return a;
}
int Maxflow(int _s,int _t)
{
s=_s; t=_t;
int flow = , i;
BFS();
// FOR(i,n) printf("%d ",d[i]); puts("");
if(d[s]>=n) return ;
memset(num,,sizeof(num));
memset(p,,sizeof(p));
FOR(i,n) if(d[i]<INF) num[d[i]]++;
int x=s;
memset(cur,,sizeof(cur));
while(d[s]<n)
{
if(x==t)
{
flow+=Augment();
x=s;
}
int ok=;
for(unsigned i=cur[x];i<G[x].size();i++)
{
Edge& e=edges[G[x][i]];
if(e.cap>e.flow && d[x]==d[e.to]+)
{
ok=;
p[e.to]=G[x][i];
cur[x]=i;
x=e.to;
break;
}
}
if(!ok)
{
int m=n-;
for(unsigned i=;i<G[x].size();i++)
{
Edge& e=edges[G[x][i]];
if(e.cap>e.flow) m=min(m,d[e.to]);
}
if(--num[d[x]]==) break;
num[d[x]=m+]++;
cur[x]=;
if(x!=s) x=edges[p[x]].from;
}
}
return flow;
}
}; ISAP isap; int main()
{
freopen("in","r",stdin);
int n,m,u,v,c;
while(scanf("%d%d",&m,&n)!=EOF)
{
isap.init(n,m);
while(m--)
{
scanf("%d%d%d",&u,&v,&c);
isap.AddEdge(u,v,c);
//isap.AddEdge(v,u,c);
}
printf("%d\n",isap.Maxflow(,n));
}
return ;
}

ISAP 模板

注意用宏定义的FOR来做点的初始化,有些题目点所从0开始编号有些所从1开始,所以需要用一个宏定义

struct Edge{
int from,to,cap,flow;
}; struct ISAP{
int n,m,s,t;
int p[N],num[N];
vector<Edge> edges;
vector<int> G[N];
bool vis[N];
int d[N],cur[N];
void init(int _n,int _m)
{
n=_n; m=_m;
int i;
edges.clear();
FOR(i,n)
{
G[i].clear();
d[i]=INF;
}
}
void AddEdge(int from,int to,int cap)
{
edges.push_back((Edge){from,to,cap,});
edges.push_back((Edge){to,from,,});
m = edges.size();
G[from].push_back(m-);
G[to].push_back(m-);
}
bool BFS()
{
memset(vis,,sizeof(vis));
queue<int> Q;
Q.push(t);
d[t]=;
vis[t]=;
while(!Q.empty())
{
int x = Q.front(); Q.pop();
for(unsigned i=;i<G[x].size();i++)
{
Edge& e = edges[G[x][i]^];
if(!vis[e.from] && e.cap>e.flow)
{
vis[e.from]=;
d[e.from] = d[x]+;
Q.push(e.from);
}
}
}
return vis[s];
}
int Augment()
{
int x=t, a=INF;
while(x!=s)
{
Edge& e = edges[p[x]];
a = min(a,e.cap-e.flow);
x = edges[p[x]].from;
}
x = t;
while(x!=s)
{
edges[p[x]].flow+=a;
edges[p[x]^].flow-=a;
x=edges[p[x]].from;
}
return a;
}
int Maxflow(int _s,int _t)
{
s=_s; t=_t;
int flow = , i;
BFS();
if(d[s]>=n) return ;
memset(num,,sizeof(num));
memset(p,,sizeof(p));
FOR(i,n) num[d[i]]++;
int x=s;
memset(cur,,sizeof(cur));
while(d[s]<n)
{
if(x==t)
{
flow+=Augment();
x=s;
}
int ok=;
for(unsigned i=cur[x];i<G[x].size();i++)
{
Edge& e=edges[G[x][i]];
if(e.cap>e.flow && d[x]==d[e.to]+)
{
ok=;
p[e.to]=G[x][i];
cur[x]=i;
x=e.to;
break;
}
}
if(!ok)
{
int m=n-;
for(unsigned i=;i<G[x].size();i++)
{
Edge& e=edges[G[x][i]];
if(e.cap>e.flow) m=min(m,d[e.to]);
}
if(--num[d[x]]==) break;
num[d[x]=m+]++;
cur[x]=;
if(x!=s) x=edges[p[x]].from;
}
}
return flow;
}
};
 
 
 
 

HDU 1532 Drainage Ditches (网络流)的更多相关文章

  1. hdu 1532 Drainage Ditches(网络流)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1532 题目大意是:农夫约翰要把多个小池塘的水通过池塘间连接的水渠排出去,从池塘1到池塘M最多可以排多少 ...

  2. HDU 1532 Drainage Ditches(网络流模板题)

    题目大意:就是由于下大雨的时候约翰的农场就会被雨水给淹没,无奈下约翰不得不修建水沟,而且是网络水沟,并且聪明的约翰还控制了水的流速, 本题就是让你求出最大流速,无疑要运用到求最大流了.题中m为水沟数, ...

  3. HDU 1532 Drainage Ditches (最大网络流)

    Drainage Ditches Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 65536/32768K (Java/Other) To ...

  4. HDU 1532 Drainage Ditches 分类: Brush Mode 2014-07-31 10:38 82人阅读 评论(0) 收藏

    Drainage Ditches Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

  5. HDU 1532 Drainage Ditches(最大流 EK算法)

    题目网址:http://acm.hdu.edu.cn/showproblem.php?pid=1532 思路: 网络流最大流的入门题,直接套模板即可~ 注意坑点是:有重边!!读数据的时候要用“+=”替 ...

  6. POJ 1273 || HDU 1532 Drainage Ditches (最大流模型)

    Drainage DitchesHal Burch Time Limit 1000 ms Memory Limit 65536 kb description Every time it rains o ...

  7. poj 1273 && hdu 1532 Drainage Ditches (网络最大流)

    Drainage Ditches Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 53640   Accepted: 2044 ...

  8. hdu 1532 Drainage Ditches(最大流)

                                                                                            Drainage Dit ...

  9. hdu 1532 Drainage Ditches(最大流模板题)

    Drainage Ditches Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

随机推荐

  1. RedHat7 防火墙设置以及端口设置

    1.查看防火墙状态,root用户登录,执行命令systemctl status firewalld 2.开启防火墙:systemctl start firewalld 3.关闭防火墙:systemct ...

  2. Java 学习 day05

    01-面向对象(概述) 面向对象 -- 冰箱.打开:冰箱.存储:冰箱.关闭: 02-面向对象(举例) 使用和指挥 -- 对象,不需要关注过程,只关注结果: 一切皆对象,万物皆对象  -- 自<T ...

  3. Asp.Net中判断是否登录,及是否有权限?

    不需要在每个页面都做判段, 方法一:只需要做以下处理即可 using System; using System.Collections.Generic; using System.Linq; usin ...

  4. HTML5(石头剪刀布游戏开发)

    <%@ page language="java" contentType="text/html; charset=UTF-8" pageEncoding= ...

  5. Hibernate的配置文件 Hibernate.cfg.xml与xxx.hbm.xml

    1.hibernate.cfg.xml配置如下: (数据库连接配置) <?xml version="1.0" encoding="UTF-8"?>& ...

  6. VMware虚拟机下安装RedHat Linux 9.0

    从这一篇文章开始我和大家一起学习Linux系统.不管是什么样的系统,必须安装上才能谈使用对吧. Linux版本 安装Linux之前需要了解一下Linux系统的安装版本. Linux的版本分为内核版本和 ...

  7. Android笔记之引用aar

    把要引用的aar文件复制到目录app\libs中(我要引用的aar名为xybigdatasdk-release-out2.2.6.aar) 在build.gradle (Module: app)中添加 ...

  8. java 核心技术卷一 知识点

    第九章 集合 1.Iterator和Iterable接口类,作用. 2.Collection接口类,作用. 3.Map接口类,作用.

  9. 【题解】P3599 Koishi Loves Construction

    [题解]P3599 Koishi Loves Construction \(\mod n\) 考虑如何构造,发现\(n\)一定在第一位,不然不行.\(n\)一定是偶数或者是\(1\),不然 \(n|\ ...

  10. 使用AXIS2作为Client訪问WebService

    使用AXIS2,能够方便的构建WebService的server端,也能够非常方便的作为Cilent,来訪问别的WebService. 以下依据工作中的经历,整理了一下,作为Cilent訪问WebSe ...