我还是很喜欢数论,从此吃喝不问,就此沉沦。

欧拉函数φ(x)的值为在[1,x)的区间内与x互质的数的个数

通式:    其中p1, p2……pn为x的所有质因数,x是不为0的整数。φ(1)=1。

注意:每种质因数只一个。 比如12=2*2*3那么φ(12)=12*(1-1/2)*(1-1/3)=4

介绍几个性质

1.若n是质数p的k次幂,则,因为除了p的倍数外,其他数都跟n互质。

2.积性函数——若m,n互质,

3.当n为质数时, , 其实与上述类似。

4.若n为质数则, 这个挺重要的。

5.一个数的所有质因子之和是φ(n)*n/2。

 //用通式算的
int euler(int n){ //返回euler(n)
int res=n,a=n;
for(int i=;i*i<=a;i++){
if(a%i==){
res=res/i*(i-);//先进行除法是为了防止中间数据的溢出
while(a%i==) a/=i;
}
}
if(a>) res=res/a*(a-);
return res;
}
 //筛选法打欧拉函数表
#define Max 1000001
int euler[Max];
void Init(){
euler[]=;
for(int i=;i<Max;i++)
euler[i]=i;
for(int i=;i<Max;i++)
if(euler[i]==i)
for(int j=i;j<Max;j+=i)
euler[j]=euler[j]/i*(i-);//先进行除法是为了防止中间数据的溢出
}
*/

欧拉函数φ(x)简要介绍及c++实现的更多相关文章

  1. UVa 10820 (打表、欧拉函数) Send a Table

    题意: 题目背景略去,将这道题很容易转化为,给出n求,n以内的有序数对(x, y)互素的对数. 分析: 问题还可以继续转化. 根据对称性,我们可以假设x<y,当x=y时,满足条件的只有(1, 1 ...

  2. Bzoj-2818 Gcd 欧拉函数

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2818 题意:给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x ...

  3. poj2480(利用欧拉函数的积性求解)

    题目链接: http://poj.org/problem?id=2480 题意:∑gcd(i, N) 1<=i <=N,就这个公式,给你一个n,让你求sum=gcd(1,n)+gcd(2, ...

  4. √n求单值欧拉函数

    基本定理: 首先看一下核心代码: 核心代码 原理解析: 当初我看不懂这段代码,主要有这么几个问题: 1.定理里面不是一开始写了一个n*xxx么?为什么代码里没有*n? 2.ans不是*(prime[i ...

  5. HDU 1695 GCD 欧拉函数+容斥定理 || 莫比乌斯反演

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  6. Master of Phi (欧拉函数 + 积性函数的性质 + 狄利克雷卷积)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6265 题目大意:首先T是测试组数,n代表当前这个数的因子的种类,然后接下来的p和q,代表当前这个数的因 ...

  7. hdu1286 找新朋友 欧拉函数模板

    首先这一题用的是欧拉函数!!函数!!不是什么欧拉公式!! 欧拉函数求的就是题目要求的数. 关于欧拉函数的模板网上百度一下到处都是,原理也容易找,这里要介绍一下另一个强势模板. 在这一题的讨论里看到的. ...

  8. 【Luogu】P2158仪仗队(欧拉函数)

    题目链接 首先来介绍欧拉函数. 设欧拉函数为f(n),则f(n)=1~n中与n互质的数的个数. 欧拉函数有三条引论: 1.若n为素数,则f(n)=n-1; 2.若n为pa,则f(n)=(p-1)*(p ...

  9. UVA10200-Prime Time/HDU2161-Primes,例题讲解,牛逼的费马小定理和欧拉函数判素数。

                                                    10200 - Prime Time 此题极坑(本菜太弱),鉴定完毕,9遍过. 题意:很简单的求一个区间 ...

随机推荐

  1. [Xcode 实际操作]八、网络与多线程-(4)使用UIApplication对象发送短信

    目录:[Swift]Xcode实际操作 本文将演示如何使用应用程序单例对象,发送短信的功能. 在项目导航区,打开视图控制器的代码文件[ViewController.swift] 注:需要使用真机进行测 ...

  2. ubuntu 14 安装XML::Simple 模块

    最近需要用到perl 来解析xml 文件,从网上搜索了一下,大部分都建议使用XML::Simple 模块来解析,这里记录一下安装过程 方法一: 直接使用CPAN 来安装模块 $ perl -MCPAN ...

  3. AttributedString 图片间距问题

    1.NSMutableAttributedString如何显示图片 NSMutableAttributedString *vipStr = [[NSMutableAttributedString al ...

  4. 关于idea中使用lamb表达式报错:ambda expressions are not supported at this language level

    我使用的是jdk1.8,使用lamb表达式的时候,报错 ambda expressions are not supported at this language level, 后来,设置了 接着重启了 ...

  5. PAT甲级——1123 Is It a Complete AVL Tree (完全AVL树的判断)

    嫌排版乱的话可以移步我的CSDN:https://blog.csdn.net/weixin_44385565/article/details/89390802 An AVL tree is a sel ...

  6. SpringBoot | quartz | @DisallowConcurrentExecution

    注释放在job类上, 作用: 将该注解加到job类上,告诉Quartz不要并发地执行同一个job定义(这里指特定的job类)的多个实例.

  7. 字典树(POJ 2503)

    它的优点是:利用字符串的公共前缀来减少查询时间,最大限度地减少无谓的字符串比较,查询效率比哈希树高. 它有3个基本性质: 根节点不包含字符,除根节点外每一个节点都只包含一个字符: 从根节点到某一节点, ...

  8. win 7启动tensorboard的详尽步骤

    TensorBoard是TensorFlow下的一个可视化的工具,能够帮助我们在训练大规模神经网络过程中出现的复杂且不好理解的运算.TensorBoard能展示你训练过程中绘制的图像.网络结构等. 1 ...

  9. 洛谷 P1053 篝火晚会

    https://www.luogu.org/problemnew/show/P1053 错误记录:判-1的时候出了些问题(比如只判了图是否连通):数组没清空 #include<cstdio> ...

  10. split命令:文件切割

    split命令:文件切割 有时候文件过大,导致不能正常使用,可以用split进行切割. 命令参数: split [选项] [要切割的文件] [输出文件名前缀] -a, --suffix-length= ...