题意求1~N!中与M!互质的数的个数,

首先证明gcd(a,b)=1时gcd(a-kb,b)=1

gcd(a,b)=1

gcd(a%b,b)=1

gcd(a-kb,b)=1

即a-kb与b互质

这样由于n!一定是m!的倍数,所以如果把n!分成很多段m!的和:1~m!,m!~2m!......

对于每一段的每个答案gcd(x,m!)=1时,也有gcd(x+km!,m!)=1

所以每段的答案都是一样的

这样答案变成了n!/m! * phi(m!)

对于phi(m!)用计算公式展开:

这里可以递推出相关的东西和逆元之类的,然而其实还可以继续简化运算

其实也只是不用求逆元了而已吧

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#define ll long long
using namespace std;
const int maxn=;
int n,m;
ll mod;
ll fac[maxn],f1[maxn],f2[maxn];
int prime[maxn];
bool ck[maxn];
void init(){
int tot=;
memset(ck,,sizeof(ck));
ck[]=ck[]=;
for(int i=;i<=maxn;i++){
if(!ck[i])prime[++tot]=i;
for(int j=;j<=tot;j++){
if(i*prime[j]>maxn)break;
ck[i*prime[j]]=;
if(i%prime[j]==)break;
}
}
}
ll qpow(ll a,ll b){
ll base=a,ans=;
while(b){
if(b&)ans=(ans*base)%mod;
base=(base*base)%mod;
b>>=;
}
return ans%mod;
}
int main(){
int T;
scanf("%d%lld",&T,&mod);
init();
fac[]=f1[]=f2[]=1ll;
for(int i=;i<maxn;i++){
fac[i]=fac[i-]*i%mod;
if(!ck[i])
f1[i]=f1[i-]*(i-)%mod,f2[i]=f2[i-]*i%mod;
else
f1[i]=f1[i-],f2[i]=f2[i-];
}
while(T--){
scanf("%d%d",&n,&m);
printf("%lld\n",((fac[n]*f1[m])%mod)*qpow(f2[m],mod-)%mod);
}
}

[题解]luogu_P2155_BZOJ_2186沙拉公主的困惑的更多相关文章

  1. Bzoj 2186: [Sdoi2008]沙拉公主的困惑 乘法逆元,线性筛,欧拉函数,数论

    2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 2560  Solved: 857[Submit][St ...

  2. 【BZOJ2186】沙拉公主的困惑(数论)

    [BZOJ2186]沙拉公主的困惑(数论) 题面 BZOJ 题解 考虑答案是啥 先假设\(n=m\) 现在求的就是\(\varphi(m!)\) 但是现在\(n!\)是\(m!\)的若干倍 我们知道 ...

  3. 【bzoj2186】[Sdoi2008]沙拉公主的困惑

    2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 3303  Solved: 1129[Submit][S ...

  4. 【BZOJ2186】[Sdoi2008]沙拉公主的困惑 线性筛素数

    [BZOJ2186][Sdoi2008]沙拉公主的困惑 Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M! ...

  5. BZOJ-2186 沙拉公主的困惑 线性筛(筛筛筛)+线性推逆元

    2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec Memory Limit: 259 MB Submit: 2417 Solved: 803 [Submit][St ...

  6. 数学(逆元):BZOJ 2186: [Sdoi2008]沙拉公主的困惑

    2186: [Sdoi2008]沙拉公主的困惑 Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞 ...

  7. 洛咕 P2155 [SDOI2008]沙拉公主的困惑

    洛咕 P2155 [SDOI2008]沙拉公主的困惑 有个结论,就是如果\(gcd(a,b)=1\),那么\(gcd(a+kb,b)=1\).证明比较显然. 所以这个题目要问的\(n!\)就可以分成\ ...

  8. BZOJ2186: [Sdoi2008]沙拉公主的困惑(求[1,N!]与M!互素的个数)(线性筛)

    2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 6103  Solved: 2060[Submit][S ...

  9. BZOJ2186 [Sdoi2008]沙拉公主的困惑 【数论,欧拉函数,线性筛,乘法逆元】

    2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec  Memory Limit: 259 MB Submit: 5003  Solved: 1725 [Submit] ...

随机推荐

  1. HDU2296 Ring —— AC自动机 + DP

    题目链接:https://vjudge.net/problem/HDU-2296 Ring Time Limit: 2000/1000 MS (Java/Others)    Memory Limit ...

  2. python基本模块相关信息

    系统相关的信息模块: import sys sys.argv 是一个 list,包含所有的命令行参数. sys.stdout sys.stdin sys.stderr 分别表示标准输入输出,错误输出的 ...

  3. matlab之plot()函数

    是个画图函数: 语法: figure(1000);hold on;plot(x,y);axis equal; 其中,x和y是某两个长度相同的列向量.比如:x=[1;2;3;4];y=[1;2;3;4] ...

  4. Python 微信通知 先挖个坑

    桑心病狂,试试把报警信息发到微信上 原文  https://segmentfault.com/a/1190000009717078  

  5. android自定义控件(四) View中的方法

    onFinishInflate() 当View中所有的子控件 均被映射成xml后触发 onMeasure(int, int) 确定所有子元素的大小 onLayout(boolean, int, int ...

  6. ACM学习历程——HDU5202 Rikka with string(dfs,回文字符串)

    Problem Description As we know, Rikka is poor at math. Yuta is worrying about this situation, so he ...

  7. U盘安装CentOS的坑

    坑一:U盘安装盘配置的路径错误 采用UltraISO制作的CentOS7的安装光盘,但是在实体机安装的时候,发生了一些奇怪的失败,比如 dracut-initqueue timeout等,后来在网上搜 ...

  8. POJ1195(二维树状数组)

    Mobile phones Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 17176   Accepted: 7920 De ...

  9. webSocket 简单介绍

    WebSocket :WebSocket协议支持(在受控环境中运行不受信任的代码的)客户端与(选择加入该代码的通信的)远程主机之间进行全双工通信.                       简单的说 ...

  10. JavaScript与DOM常见面试题

    1. JavaScript 1.1.简要描述 JavaScript的数据类型? 参考答案: Java Sc ri pt 的数据类型可以分为原始类型和对象类型.原始类型包括 string. number ...