[题解]luogu_P2155_BZOJ_2186沙拉公主的困惑
题意求1~N!中与M!互质的数的个数,
首先证明gcd(a,b)=1时gcd(a-kb,b)=1
gcd(a,b)=1
gcd(a%b,b)=1
gcd(a-kb,b)=1
即a-kb与b互质
这样由于n!一定是m!的倍数,所以如果把n!分成很多段m!的和:1~m!,m!~2m!......
对于每一段的每个答案gcd(x,m!)=1时,也有gcd(x+km!,m!)=1
所以每段的答案都是一样的
这样答案变成了n!/m! * phi(m!)
对于phi(m!)用计算公式展开:
这里可以递推出相关的东西和逆元之类的,然而其实还可以继续简化运算
其实也只是不用求逆元了而已吧
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#define ll long long
using namespace std;
const int maxn=;
int n,m;
ll mod;
ll fac[maxn],f1[maxn],f2[maxn];
int prime[maxn];
bool ck[maxn];
void init(){
int tot=;
memset(ck,,sizeof(ck));
ck[]=ck[]=;
for(int i=;i<=maxn;i++){
if(!ck[i])prime[++tot]=i;
for(int j=;j<=tot;j++){
if(i*prime[j]>maxn)break;
ck[i*prime[j]]=;
if(i%prime[j]==)break;
}
}
}
ll qpow(ll a,ll b){
ll base=a,ans=;
while(b){
if(b&)ans=(ans*base)%mod;
base=(base*base)%mod;
b>>=;
}
return ans%mod;
}
int main(){
int T;
scanf("%d%lld",&T,&mod);
init();
fac[]=f1[]=f2[]=1ll;
for(int i=;i<maxn;i++){
fac[i]=fac[i-]*i%mod;
if(!ck[i])
f1[i]=f1[i-]*(i-)%mod,f2[i]=f2[i-]*i%mod;
else
f1[i]=f1[i-],f2[i]=f2[i-];
}
while(T--){
scanf("%d%d",&n,&m);
printf("%lld\n",((fac[n]*f1[m])%mod)*qpow(f2[m],mod-)%mod);
}
}
[题解]luogu_P2155_BZOJ_2186沙拉公主的困惑的更多相关文章
- Bzoj 2186: [Sdoi2008]沙拉公主的困惑 乘法逆元,线性筛,欧拉函数,数论
2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 2560 Solved: 857[Submit][St ...
- 【BZOJ2186】沙拉公主的困惑(数论)
[BZOJ2186]沙拉公主的困惑(数论) 题面 BZOJ 题解 考虑答案是啥 先假设\(n=m\) 现在求的就是\(\varphi(m!)\) 但是现在\(n!\)是\(m!\)的若干倍 我们知道 ...
- 【bzoj2186】[Sdoi2008]沙拉公主的困惑
2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 3303 Solved: 1129[Submit][S ...
- 【BZOJ2186】[Sdoi2008]沙拉公主的困惑 线性筛素数
[BZOJ2186][Sdoi2008]沙拉公主的困惑 Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M! ...
- BZOJ-2186 沙拉公主的困惑 线性筛(筛筛筛)+线性推逆元
2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec Memory Limit: 259 MB Submit: 2417 Solved: 803 [Submit][St ...
- 数学(逆元):BZOJ 2186: [Sdoi2008]沙拉公主的困惑
2186: [Sdoi2008]沙拉公主的困惑 Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞 ...
- 洛咕 P2155 [SDOI2008]沙拉公主的困惑
洛咕 P2155 [SDOI2008]沙拉公主的困惑 有个结论,就是如果\(gcd(a,b)=1\),那么\(gcd(a+kb,b)=1\).证明比较显然. 所以这个题目要问的\(n!\)就可以分成\ ...
- BZOJ2186: [Sdoi2008]沙拉公主的困惑(求[1,N!]与M!互素的个数)(线性筛)
2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 6103 Solved: 2060[Submit][S ...
- BZOJ2186 [Sdoi2008]沙拉公主的困惑 【数论,欧拉函数,线性筛,乘法逆元】
2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec Memory Limit: 259 MB Submit: 5003 Solved: 1725 [Submit] ...
随机推荐
- HDU2296 Ring —— AC自动机 + DP
题目链接:https://vjudge.net/problem/HDU-2296 Ring Time Limit: 2000/1000 MS (Java/Others) Memory Limit ...
- python基本模块相关信息
系统相关的信息模块: import sys sys.argv 是一个 list,包含所有的命令行参数. sys.stdout sys.stdin sys.stderr 分别表示标准输入输出,错误输出的 ...
- matlab之plot()函数
是个画图函数: 语法: figure(1000);hold on;plot(x,y);axis equal; 其中,x和y是某两个长度相同的列向量.比如:x=[1;2;3;4];y=[1;2;3;4] ...
- Python 微信通知 先挖个坑
桑心病狂,试试把报警信息发到微信上 原文 https://segmentfault.com/a/1190000009717078
- android自定义控件(四) View中的方法
onFinishInflate() 当View中所有的子控件 均被映射成xml后触发 onMeasure(int, int) 确定所有子元素的大小 onLayout(boolean, int, int ...
- ACM学习历程——HDU5202 Rikka with string(dfs,回文字符串)
Problem Description As we know, Rikka is poor at math. Yuta is worrying about this situation, so he ...
- U盘安装CentOS的坑
坑一:U盘安装盘配置的路径错误 采用UltraISO制作的CentOS7的安装光盘,但是在实体机安装的时候,发生了一些奇怪的失败,比如 dracut-initqueue timeout等,后来在网上搜 ...
- POJ1195(二维树状数组)
Mobile phones Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 17176 Accepted: 7920 De ...
- webSocket 简单介绍
WebSocket :WebSocket协议支持(在受控环境中运行不受信任的代码的)客户端与(选择加入该代码的通信的)远程主机之间进行全双工通信. 简单的说 ...
- JavaScript与DOM常见面试题
1. JavaScript 1.1.简要描述 JavaScript的数据类型? 参考答案: Java Sc ri pt 的数据类型可以分为原始类型和对象类型.原始类型包括 string. number ...