关于自适应Simpson法的介绍可以去看我的另一篇blog

http://www.lydsy.com/JudgeOnline/problem.php?id=1502

题意:空间里圆心在同一直线上且底面与地面平行的若干个圆台和顶层的圆锥以$\alpha$的角度投影到地面,求投影的面积。


(其实我是看po姐博客来的x)

首先把圆锥的顶点也看成一个半径为0的圆锥,对于每个高度为$h$的圆投影下去的坐标是$h/tan(\alpha)$,半径不变,而对于圆台的侧面投影下去是上下底两个圆的切线。

关于两个圆的切线可以像图上这样求(参考po姐博客的x)

$\sin(\alpha)=\frac{r_{i-1}-r_i}{x_i-x_{i-1}}$

这个式子同样可以适用于其他情况,然后三角函数搞一下求出其他点的坐标,根据坐标的范围用Simpson法来求面积。

只是把求点的函数值改成扫一遍所有的点和圆,找最大值。

哦然后我的Simpson递归的时候本来是让eps乘上$\frac{1}{2}$的…但是这样会T掉,不乘又会wa…orz

然后改成$\frac{2}{3}$就可以了…跑900+ms真神奇

#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=515;
struct point
{
double x,y;
};
struct line
{
point p1,p2;
double k,b;
line(){}
void modify(double x1,double y1,double x2,double y2)
{
p1.x=x1;p1.y=y1;
p2.x=x2;p2.y=y2;
k=(p1.y-p2.y)/(p1.x-p2.x);
b=p1.y-k*p1.x;
}
double f(double x)
{
return k*x+b;
}
}ls[N];
struct circle
{
double x,r;
}cs[N];
int n,tot;double alpha;
inline double f(double x)
{
double res=0;double eps=1e-6;
for(register int i=1;i<=n;i++)
{
double dis=fabs(x-cs[i].x);
if(dis-cs[i].r>-eps)continue;
double y=sqrt(cs[i].r*cs[i].r-dis*dis);
res=max(res,y);
}
for(register int i=1;i<=tot;i++)
{
if(!(ls[i].p1.x<=x&&x<=ls[i].p2.x))continue;
double y=ls[i].f(x);
res=max(res,y);
}
return res;
}
inline double calc(double l,double r)
{
double mid=l+(r-l)/2;
return (f(l)+4.0*f(mid)+f(r))*(r-l)/6.0;
}
inline double asr(double l,double r,double area,double eps)
{
double mid=l+(r-l)/2;
double L=calc(l,mid),R=calc(mid,r);
if(fabs(L+R-area)<=eps*10.0)return L+R+(L+R-area)/10.0;
return asr(l,mid,L,eps*2.0/3.0)+asr(mid,r,R,eps*2.0/3.0);
}
inline double solve(double l,double r,double eps)
{
return asr(l,r,calc(l,r),eps);
}
int main()
{
//freopen("input.in","r",stdin);
double eps=1e-6,l,r;l=r=0;
scanf("%d%lf",&n,&alpha);alpha=1/(tan(alpha));
for(register int i=1;i<=n+1;i++)
{
scanf("%lf",&cs[i].x);
cs[i].x*=alpha;
cs[i].x+=cs[i-1].x;
}
for(register int i=1;i<=n;i++)
{
scanf("%lf",&cs[i].r);
}
for(register int i=1;i<=n+1;i++)
{
l=min(l,cs[i].x-cs[i].r);
r=max(r,cs[i].x+cs[i].r);
}
for(register int i=2;i<=n+1;i++)
{
double L=cs[i].x-cs[i-1].x;
if(L-fabs(cs[i].r-cs[i-1].r)<eps)continue;
//double sin_alpha=fabs(cs[i].r-cs[i-1].r)/L;
double sin_alpha=(cs[i-1].r-cs[i].r)/L;
double cos_alpha=sqrt(1-sin_alpha*sin_alpha);
ls[++tot].modify(cs[i-1].x+cs[i-1].r*sin_alpha,cs[i-1].r*cos_alpha,
cs[i].x+cs[i].r*sin_alpha,cs[i].r*cos_alpha);
}
printf("%.2lf",solve(l,r,eps)*2.0);
return 0;
}

[日常摸鱼]bzoj1502[NOI2005]月下柠檬树-简单几何+Simpson法的更多相关文章

  1. 【BZOJ-1502】月下柠檬树 计算几何 + 自适应Simpson积分

    1502: [NOI2005]月下柠檬树 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1017  Solved: 562[Submit][Status] ...

  2. [NOI2005]月下柠檬树[计算几何(simpson)]

    1502: [NOI2005]月下柠檬树 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1169  Solved: 626[Submit][Status] ...

  3. BZOJ1502: [NOI2005]月下柠檬树

    Simpson法相当好用啊!神奇的骗分算法! /************************************************************** Problem: 1502 ...

  4. 【BZOJ1502】[NOI2005]月下柠檬树 Simpson积分

    [BZOJ1502][NOI2005]月下柠檬树 Description 李哲非常非常喜欢柠檬树,特别是在静静的夜晚,当天空中有一弯明月温柔地照亮地面上的景物时,他必会悠闲地坐在他亲手植下的那棵柠檬树 ...

  5. BZOJ 1502: [NOI2005]月下柠檬树 [辛普森积分 解析几何 圆]

    1502: [NOI2005]月下柠檬树 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1070  Solved: 596[Submit][Status] ...

  6. [NOI2005]月下柠檬树

    题意 F.A.Qs Home Discuss ProblemSet Status Ranklist Contest 入门OJ ModifyUser  autoint Logout 捐赠本站 Probl ...

  7. 5.21 省选模拟赛 luogu P4207 [NOI2005]月下柠檬树 解析几何 自适应辛普森积分法

    LINK:月下柠檬树 之前感觉这道题很鬼畜 实际上 也就想到辛普森积分后就很好做了. 辛普森积分法的式子不再赘述 网上多的是.值得一提的是 这道题利用辛普森积分法的话就是一个解析几何的问题 而并非计算 ...

  8. 【bzoj1502】[NOI2005]月下柠檬树 自适应Simpson积分

    题目描述 李哲非常非常喜欢柠檬树,特别是在静静的夜晚,当天空中有一弯明月温柔地照亮地面上的景物时,他必会悠闲地坐在他亲手植下的那棵柠檬树旁,独自思索着人生的哲理.李哲是一个喜爱思考的孩子,当他看到在月 ...

  9. BZOJ1502:[NOI2005]月下柠檬树——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=1502 https://www.luogu.org/problemnew/show/P4207 李哲 ...

随机推荐

  1. IDEA创建WebService服务端与客户端

    创建服务端 一.file–>new–>project 二.点击next后输入服务端名,点击finish,生成目录如下 三.在 HelloWorld.Java 文件中右击,选 Tools 的 ...

  2. FL Studio乐理教程之添加和弦

    和弦是指有一定音程关系的一组声音,即将三个或以上的音,按照三度或非三度的叠置关系,在纵向上加以结合,就称为和弦. FL Studio可以编辑和弦吗?当然可以!首先我们使用FL Stuido20钢琴卷帘 ...

  3. 关于Boom 3D“夜间模式”的妙用

    Boom 3D的"夜间模式"不仅能够优化音效,减小高分贝声音的突然刺激,让你夜晚的聆听效果更加舒适,还能将音效运用到各种环境中. 下面小编就给大家讲一讲如何更好的利用Boom 3D ...

  4. zabbix地图显示全国延迟

    Zabbix 地图显示全国延迟 1.  效果图 2.  实现方法 将地图.png上传到zabbix为背景,上传红绿点.png为图标.然后新建主机关联模板为ICMP Ping,新建一个拓扑图调用地图为背 ...

  5. 程序演示:C语言第一个简单实例

    在信息化.智能化的世界里,可能很早很早 我们就听过许多IT类的名词,C语言也在其中,我们侃侃而谈,到底C程序是什么样子?让我们先看简单的一个例子: 1 2 3 4 5 6 7 8 9 #include ...

  6. jmp使用

    jps -l jmap 36429 jmap -heap 36429 jmap -histo:live 36429 jmap -clstats 36429 jmap  -finalizerinfo 3 ...

  7. HTTP系列(一)URI、URL、URN的区别

    ​1.URI.URL.URN关系图 1)URI Uniform Resource Identifier 统一资源标识符 每个web服务器资源都有一个名字,服务器资源名被统称为统一资源标识符:URI就像 ...

  8. C++20初体验——concepts

    引子 凡是涉及STL的错误都不堪入目,因为首先STL中有复杂的层次关系,在错误信息中都会暴露出来,其次这么多类和函数的名字大多都是双下划线开头的,一般人看得不习惯. 一个经典的错误是给std::sor ...

  9. [GXYCTF2019] MISC杂项题

    buuoj复现 1,佛系青年 下载了之后是一个加密的txt文件和一张图片 分析图片无果,很讨厌这种脑洞题,MISC应该给一点正常的线索加部分脑洞而不是出干扰信息来故意让选手走错方向,当时比赛做这道题的 ...

  10. [BJDCTF 2nd]old-hack && [GXYCTF2019]禁止套娃

    [BJDCTF 2nd]old-hack 页面很有意思 同时也告诉了我们是THINKPHP5,我们只需要寻找THINKPHP5的漏洞就可以了. https://www.codercto.com/a/5 ...