CF-1333F Kate and imperfection
F. Kate and imperfection
假设一个一个的往集合里面放元素,显然在放某个元素之前,我们不想让它的倍数已经在集合里面。因为在这之前,我们不如先把这个数放进去,再把它的倍数放进去更优(因为它的倍数更容易和别的数字产生更大的gcd)。
所以在放元素时,这个元素的所有因数应该已经都在集合中了,对于一个集合,如果对于集合中的所有数字,他们的因数都在该集合中,那么这个集合中某两个数字的最大gcd即为某个数的最大真因子(非本身)。
设 \(d[x]\) 为 x 的最大真因数,按照\(d[x]\) 排序处理即可
如果第一段猜想解释还不够清楚,可以参考一下官方题解,首先知道答案序列一定是不降的,分段递增。然后如果对于\(a_i \in A=\{a_1,a_2,\cdots a_k\}\),如果 \(a_i\) 的某个因子不在集合中,可以用这个因子替换掉 \(a_i\) ,这个集合的不完美度只会降低不会升高,所以我们有理由让\(a_i\) 的所有因子都出现在该集合中。
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int inf = 0x3f3f3f3f;
#define dbg(x...) do { cout << "\033[32;1m" << #x <<" -> "; err(x); } while (0)
void err() { cout << "\033[39;0m" << endl; }
template<class T, class... Ts> void err(const T& arg,const Ts&... args) { cout << arg << " "; err(args...); }
const int N = 500000 + 5;
int primes[N], v[N], m;
void prime(int n){
v[1] = 1;
for(int i=2;i<=n;i++){
if(!v[i]) primes[++m] = i, v[i] = 1;
for(int j=1;j<=m;j++){
if(primes[j] > n / i) break;
v[primes[j]*i] = i;
if(i % primes[j] == 0) break;
}
}
}
int main(){
int n;scanf("%d", &n);
prime(n);
sort(v+1, v+1+n);
for(int i=2;i<=n;i++)
printf("%d ", v[i]);
return 0;
}
CF-1333F Kate and imperfection的更多相关文章
- CF R 632 div2 1333F Kate and imperfection
赛后看了半天题 才把题目看懂 英语水平极差. 意思:定义一个集合S的权值为max{gcd(a,b)};且\(a\neq b\) 这个集合可以从1~n中选出一些数字 求出当集合大小为k时的最小价值. 无 ...
- Codeforces Round #632 (Div. 2)
Codeforces Round #632 (Div. 2) 这一场打的好差呀,这几次艰难上的分全部掉回去了,感觉就像一夜回到了解放前. 说实话,就是被B卡到了,没看到只能从小的放到大的... Lit ...
- ORA-00494: enqueue [CF] held for too long (more than 900 seconds) by 'inst 1, osid 5166'
凌晨收到同事电话,反馈应用程序访问Oracle数据库时报错,当时现场现象确认: 1. 应用程序访问不了数据库,使用SQL Developer测试发现访问不了数据库.报ORA-12570 TNS:pac ...
- cf之路,1,Codeforces Round #345 (Div. 2)
cf之路,1,Codeforces Round #345 (Div. 2) ps:昨天第一次参加cf比赛,比赛之前为了熟悉下cf比赛题目的难度.所以做了round#345连试试水的深浅..... ...
- cf Round 613
A.Peter and Snow Blower(计算几何) 给定一个点和一个多边形,求出这个多边形绕这个点旋转一圈后形成的面积.保证这个点不在多边形内. 画个图能明白 这个图形是一个圆环,那么就是这个 ...
- ARC下OC对象和CF对象之间的桥接(bridge)
在开发iOS应用程序时我们有时会用到Core Foundation对象简称CF,例如Core Graphics.Core Text,并且我们可能需要将CF对象和OC对象进行互相转化,我们知道,ARC环 ...
- [Recommendation System] 推荐系统之协同过滤(CF)算法详解和实现
1 集体智慧和协同过滤 1.1 什么是集体智慧(社会计算)? 集体智慧 (Collective Intelligence) 并不是 Web2.0 时代特有的,只是在 Web2.0 时代,大家在 Web ...
- CF memsql Start[c]UP 2.0 A
CF memsql Start[c]UP 2.0 A A. Golden System time limit per test 1 second memory limit per test 256 m ...
- CF memsql Start[c]UP 2.0 B
CF memsql Start[c]UP 2.0 B B. Distributed Join time limit per test 1 second memory limit per test 25 ...
随机推荐
- 【Java基础】网络编程
网络编程 网络编程概述 网络编程的目的:直接或简洁地通过网络协议与其他计算机实现数据交换,进行通讯. 网络编程的两个主要问题: 如果准确地定位网络上一台或多台主机,并定位主机上的特定应用: 找到主机后 ...
- 根据业务摸索出的一个selenium代码模版(python)
前言 总算入行上班几个月了,不得不说业务是真的不消停啊.. 本人工作上经常遇到一种场景:为甲方做自动化接口处理工具,登录需要短信验证码,, 嘛算是摸索出了一套selenium代码模板,主要解决如下痛点 ...
- kubernets之向外部应用暴露应用
一 通过NodePort来暴露服务 前面已经介绍的服务的一些作用,例如将集群内部的应用暴露给集群内部的pod使用,将外部的应用通过服务暴露给内部应用使用,但是服务最大的作用不仅仅是这些 而是将集群内 ...
- Netty学习:ChannelHandler执行顺序详解,附源码分析
近日学习Netty,在看书和实践的时候对于书上只言片语的那些话不是十分懂,导致尝试写例子的时候遭遇各种不顺,比如decoder和encoder还有HttpObjectAggregator的添加顺序,研 ...
- python协程爬取某网站的老赖数据
import re import json import aiohttp import asyncio import time import pymysql from asyncio.locks im ...
- SDNU_ACM_ICPC_2021_Winter_Practice_1st [个人赛] 2021.1.19 星期二
SDNU_ACM_ICPC_2021_Winter_Practice_1st [个人赛] K - Color the ball 题意: 有n个气球,每次都给定两个整数a,b,给a到b内所有的气球涂一个 ...
- 微服务网关1-Spring Cloud Gateway简介
一.网关基本概念 1.API网关介绍 API 网关出现的原因是微服务架构的出现,不同的微服务一般会有不同的网络地址,而外部客户端可能需要调用多个服务的接口才能完成一个业务需求,如果让客户端直接与各 ...
- (Oracle)索引实战(转载)
人们在使用SQL时往往会陷入一个误区,即太关注于所得的结果是否正确,而忽略了不同的实现方法之间可能存在的性能差异,这种性能差异在大型的或是复杂的数据库环境中(如联机事务处理OLTP或决策支持系统DSS ...
- GC 卡顿 优化 三色标记优势
小结: 1. 三色标记的一个明显好处是能够让用户程序和 mark 并发的进行 Go GC 卡顿由秒级降到毫秒级以下:到底做了哪些优化? https://mp.weixin.qq.com/s/2BMGG ...
- URI与URL傻傻分不清楚?
前言 总所周知,缓存是解决Http1.1协议传输性能的问题中最主要的手段. 缓存既可以存在于浏览器上,也可以存在于服务器中. 而影响缓存的Http头部有很多,其中Cache-Control是比较重要的 ...