牛的旅行 Cow Tours



题目描述

农民 John的农场里有很多牧区。有的路径连接一些特定的牧区。一片所有连通的牧区称为一个牧场。但是就目前而言,你能看到至少有两个牧区通过任何路径都不连通。这样,Farmer John就有多个牧场了。

John想在牧场里添加一条路径(注意,恰好一条)。对这条路径有以下限制:

一个牧场的直径就是牧场中最远的两个牧区的距离(本题中所提到的所有距离指的都是最短的距离)。考虑如下的有5个牧区的牧场,牧区用“*”表示,路径用直线表示。每一个牧区都有自己的坐标:

            (15,15) (20,15)
D E
*-------*
| _/|
| _/ |
| _/ |
|/ |
*--------*-------*
A B C
(10,10) (15,10) (20,10)

这个牧场的直径大约是12.07106, 最远的两个牧区是A和E,它们之间的最短路径是A-B-E。

这里是另一个牧场:

                    *F(30,15)
/
_/
_/
/
*------*
G H
(25,10) (30,10)

在目前的情景中,他刚好有两个牧场。John将会在两个牧场中各选一个牧区,然后用一条路径连起来,使得连通后这个新的更大的牧场有最小的直径。

注意,如果两条路径中途相交,我们不认为它们是连通的。只有两条路径在同一个牧区相交,我们才认为它们是连通的。

输入文件包括牧区、它们各自的坐标,还有一个如下的对称邻接矩阵

      A  B  C  D  E  F  G  H
A 0 1 0 0 0 0 0 0
B 1 0 1 1 1 0 0 0
C 0 1 0 0 1 0 0 0
D 0 1 0 0 1 0 0 0
E 0 1 1 1 0 0 0 0
F 0 0 0 0 0 0 1 0
G 0 0 0 0 0 1 0 1
H 0 0 0 0 0 0 1 0

其他邻接表中可能直接使用行列而不使用字母来表示每一个牧区。输入数据中不包括牧区的名字。

输入文件至少包括两个不连通的牧区。

请编程找出一条连接两个不同牧场的路径,使得连上这条路径后,这个更大的新牧场有最小的直径。输出在所有牧场中最小的可能的直径。


输入格式

第1行: 一个整数N (1 <= N <= 150), 表示牧区数

第2到N+1行: 每行两个整数X,Y (0 <= X ,Y<= 100000), 表示N个牧区的坐标。注意每个 牧区的坐标都是不一样的。

第N+2行到第2*N+1行: 每行包括N个数字(0或1) 表示如上文描述的对称邻接矩阵。


输出格式

只有一行,包括一个实数,表示所求直径。数字保留六位小数。

只需要打到小数点后六位即可,不要做任何特别的四舍五入处理。


输入输出样例


输入 #1

8
10 10
15 10
20 10
15 15
20 15
30 15
25 10
30 10
01000000
10111000
01001000
01001000
01110000
00000010
00000101
00000010


输出 #1

22.071068


解析

这道题用到了最短路,本题解用的是Floyed-Warshall算法

Floyed-Warshall算法简称Floyed(弗洛伊德)算法,是最简单的最短路径算法,可以计算图中任意两点间的最短路径。Floyed的时间复杂度是O (N3)适用于出现负边权的情况。
算法描述:
初始化:点u、v如果有边相连,则dis[u][v]=w[u][v]。
  如果不相连则xt[u][v]=0x7fffffff

分割线------------------------------------------
这一题就是用Floyed-Warshall算法求一遍最短路,然后找出每一个点联通的距离它最远的点,然后记录下来,最后再枚举任意两个不连通的点,将它们联通,这样就可以根据两点之间的距离公式以及两个点各自的最大距离相加,就是新连接的两个牧场的直径


代码

#include<cmath>
#include<stdio.h>
#include<iostream>
using namespace std;
const int MAX=0x7fffffff; //int类型的最大值
int n,x[151],y[151]; //储存n的点的位置
double xt[151][151],bq[151],jo,jk=MAX;
double maxx(double a,double b){
//a和b和函数maxx要用double类型,因为传输过来的和发送出去的值可能是浮点数
return a>b?a:b; //三目运算
}
double minn(double a,double b){ //同上
return a<b?a:b; //三目运算
}
double BIG_JB(int i,int j){
return sqrt(abs(x[i]-x[j])*1.0*abs(x[i]-x[j])+abs(y[i]-y[j])*1.0*abs(y[i]-y[j]));
//通过勾股定理来求这两个点的最短距离
}
int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++){
scanf("%d%d",&x[i],&y[i]);
}
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++){
int bq_deng;
scanf("%1d",&bq_deng);
if(bq_deng)xt[i][j]=BIG_JB(i,j); //如果i点和j点是联通的,就算出它们的距离
else if(i!=j) xt[i][j]=MAX; //不然如果不是自己本身这个点就将它们的距离赋最大值
}
for(int k=1;k<=n;k++)
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
if((i!=j) and (i!=k) and (j!=k) and (xt[i][k]+xt[k][j]<xt[i][j]))
xt[i][j]=xt[i][k]+xt[k][j]; //我们的Floyed-Warshall算法
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++){
if(xt[i][j]!=MAX)bq[i]=maxx(bq[i],xt[i][j]);
jo=maxx(jo,bq[i]); //找出每一个点联通的距离它最远的点,然后记录下来
}
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
if(xt[i][j]==MAX)
jk=minn(jk,bq[i]+BIG_JB(i,j)+bq[j]);
//根据两点之间的距离公式以及两个点各自的最大距离相加,计算最大牧场直径
printf("%.6lf\n",max(jo,jk)); //因为有可能新联通的牧场还没有原来的牧场大,所以还要再取一遍最大值
return 0;
}

[图论]牛的旅行 Cow Tours :Floyed-Warshall的更多相关文章

  1. P1522 牛的旅行 Cow Tours floyed

    题目描述 农民 John的农场里有很多牧区.有的路径连接一些特定的牧区.一片所有连通的牧区称为一个牧场.但是就目前而言,你能看到至少有两个牧区通过任何路径都不连通.这样,Farmer John就有多个 ...

  2. 洛谷P1522 牛的旅行 Cow Tours

    ---恢复内容开始--- P1522 牛的旅行 Cow Tours189通过502提交题目提供者该用户不存在标签 图论 USACO难度 提高+/省选-提交该题 讨论 题解 记录 最新讨论 输出格式题目 ...

  3. 洛谷 P1522 牛的旅行 Cow Tours 题解

    P1522 牛的旅行 Cow Tours 题目描述 农民 John的农场里有很多牧区.有的路径连接一些特定的牧区.一片所有连通的牧区称为一个牧场.但是就目前而言,你能看到至少有两个牧区通过任何路径都不 ...

  4. 洛谷P1522 [USACO2.4]牛的旅行 Cow Tours

    洛谷P1522 [USACO2.4]牛的旅行 Cow Tours 题意: 给出一些牧区的坐标,以及一个用邻接矩阵表示的牧区之间图.如果两个牧区之间有路存在那么这条路的长度就是两个牧区之间的欧几里得距离 ...

  5. Luogu P1522 牛的旅行 Cow Tours

    题目描述 农民 John的农场里有很多牧区.有的路径连接一些特定的牧区.一片所有连通的牧区称为一个牧场.但是就目前而言,你能看到至少有两个牧区通过任何路径都不连通.这样,Farmer John就有多个 ...

  6. P1522 牛的旅行 Cow Tours

    题目描述 农民 John的农场里有很多牧区.有的路径连接一些特定的牧区.一片所有连通的牧区称为一个牧场.但是就目前而言,你能看到至少有两个牧区通过任何路径都不连通.这样,Farmer John就有多个 ...

  7. 洛谷 P1522 牛的旅行 Cow Tours

    题目链接:https://www.luogu.org/problem/P1522 思路:编号,然后跑floyd,这是很清楚的.然后记录每个点在这个联通块中的最远距离. 然后分连通块,枚举两个点(不属于 ...

  8. 洛谷 - P1522 - 牛的旅行 - Cow Tours - Floyd

    https://www.luogu.org/problem/P1522 好坑啊,居然还有直径不通过新边的数据,还好不是很多. 注意一定要等Floyd跑完之后再去找连通块的直径,不然一定是INF. #i ...

  9. 洛谷 P1522 牛的旅行 Cow Tours——暴力枚举+最短路

    先上一波题目  https://www.luogu.org/problem/P1522 这道题其实就是给你几个相互独立的连通图 问找一条新的路把其中的两个连通图连接起来后使得新的图中距离最远的两个点之 ...

随机推荐

  1. 5G & 音频,视频

    5G & 音频,视频 直播,webtrtc 音频,视频 基础知识 基本概念.播放流程.封装格式.编解码.传输协议 音视频播放流程 主要流程:采集 -> 前处理 -> 编码 -> ...

  2. Travis CI in Action

    Travis CI in Action node.js https://docs.travis-ci.com/user/tutorial/ https://docs.travis-ci.com/use ...

  3. TypeScript 如何编写类库声明文件 .d.ts

    TypeScript 如何编写类库声明文件 .d.ts how to write a d.ts file declaration-files/ https://www.typescriptlang.o ...

  4. MongoDB的下载、安装与部署

    1.什么是MongoDB? 它是介于关系型数据库和非关系型数据库之间的一种NoSQL数据库,用C++编写,是一款集敏捷性.可伸缩性.扩展性于一身的高性能的面向文档的通用数据库. 2.为什么要用Mong ...

  5. std::vector与std::list效能对比(基于c++11)

    测试对象类型不同,数量级不同时,表现具有差异: 测试数据对象为std::function时: test: times(1000)vector push_back time 469 usvector e ...

  6. 3. Vue语法--计算属性

    一. 计算属性 1. 什么是计算属性? 通常, 我们是在模板中, 通过插值语法显示data的内容, 但有时候我们可能需要在{{}}里添加一些计算, 然后在展示出来数据. 这时我们可以使用到计算属性 先 ...

  7. 死磕以太坊源码分析之EVM指令集

    死磕以太坊源码分析之EVM指令集 配合以下代码进行阅读:https://github.com/blockchainGuide/ 写文不易,给个小关注,有什么问题可以指出,便于大家交流学习. 以下指令集 ...

  8. 06.numpy聚合运算

    >>> import numpy as np >>> L = np.random.random(100) >>> L array([0.82846 ...

  9. react性能提升

    1.把.bind(this)提升到constructor里面 2.在生命周期函数里面shouldComponentupdate里面做父组件改变重新渲染以致于子组件重新渲染的禁止 3.在setstate ...

  10. 第29天学习打卡(迭代器、泛型 、Collection工具类、set集合的特点及应用、Map集合的特点及应用)

    迭代器 对过程的重复,称为迭代. 迭代器是遍历Collection集合的通用方式,可以在对集合遍历的同时进行添加.删除等操作. 迭代器的常用方法 next():返回迭代的下一个元素对象 hasNext ...