灵感的源泉来源于不断的接受新鲜事物。

Chrome 89 新功能一览,性能提升明显,大量 DevTools 新特性!

文章中的新特性,掌握了对日常开发,很受益,赶紧更新浏览器版本吧。

谈谈其中提到的:新的颜色对比度算法-先进感知对比度算法(APCA)。

启用该功能设置:选中 Settings > Experiments 下的 Enable new Advanced Perceptual Contrast Algorithm (APCA) replacing previous contrast ratio and AA/AAA guidelines 复选框。

能帮助开发者验证文本是否满足建议的对比度比率

对比度

在构建页面或应用程序时需要考虑对比度,这一点很重要。对比度是页面上相邻显示的颜色之间的差异。

对比度差的页面很难阅读,并且元素也不突出。具有良好对比度的页面,不仅看起来更好,而且对用户更加友好和具有高可访问性。

某些视力较差的人看不到非常明亮或非常暗的区域。所有内容往往都看起来几乎相同,这使区分轮廓和边缘变得很困难。

对比度比率测量文本前景和背景之间的亮度差异。如果文本的对比度较低,则这些视力较差的用户可能会以空白屏幕的形式体验您的网站。

为了帮助开发者正确地获得对比度,WCAG(Web内容可访问性指南)建议最小(AA)对比度至少为 4.5:1,对于大文本,则为 3:1,或者增强(AAA)对比度为 7:1 或 4.5:1(大文本)。

最小对比度(AA):

增强对比度(AAA):

在控制台查看

good

bad

颜色选取器可帮助你验证文本是否满足建议的对比度比率:

检查拾色器的 " 对比度比率 " 部分。 一个复选标记表示该元素满足 最低建议。 两个复选标记表示它符合 增强的建议。

单击 " 对比度比率 " 部分可查看详细信息。可视选取器中的颜色选取器顶部会显示一条线。如果当前颜色满足建议,则行的同一侧的任何内容也满足建议。如果当前颜色不符合建议,则同一侧的任何内容也不能满足建议。

插件或网站

有很多插件或网站可以进行检查,比如:https://contrast-ratio.com/

感知对比度算法(APCA)

感知对比度算法(APCA)正在取代颜色选择器中的 AA/AAA 对比度。

APCA 是在现代色觉研究的基础上发展起来的一种新的计算对比度的方法。与 AA/AAA 相比,APCA 更依赖于上下文。对比度是根据文本的空间、颜色和上下文的空间属性来计算的。

  • 文本的空间属性,包括字体粗细和大小
  • 颜色的空间属性,包括文本和背景之间的感知对比度
  • 上下文的空间属性,包括环境光、周围和预期用途

APCA Math 原理

APCA is the Advanced Perceptual Contrast Algorithm。

更多请看resiurces

js 实现的 SAPC

	const sRGBtrc = 2.218;
const Rco = 0.2126; // sRGB Red Coefficient
const Gco = 0.7156; // sRGB Green Coefficient
const Bco = 0.0722; // sRGB Blue Coefficient const scaleBoW = 161.8; // Scaling for dark text on light (phi * 100)
const scaleWoB = 161.8; // Scaling for light text on dark — same as BoW, but const normBGExp = 0.38; // Constants for Power Curve Exponents.
const normTXTExp = 0.43; // One pair for normal text,and one for REVERSE
const revBGExp = 0.5; // FUTURE: These will eventually be dynamic
const revTXTExp = 0.43; // as a function of light adaptation and context const blkThrs = 0.02; // Level that triggers the soft black clamp
const blkClmp = 1.75; // Exponent for the soft black clamp curve function SAPCbasic(Rbg,Gbg,Bbg,Rtxt,Gtxt,Btxt) { var SAPC = 0.0; // Find Y by applying coefficients and sum. var Ybg = Rbg*Rco + Gbg*Gco + Bbg*Bco;
var Ytxt = Rtxt*Rco + Gtxt*Gco + Btxt*Bco; if ( Ybg > Ytxt ) { ///// For normal polarity, black text on white // soft clamp darkest color if near black.
Ytxt = (Ytxt > blkThrs) ? Ytxt : Ytxt + Math.abs(Ytxt - blkThrs) ** blkClmp;
SAPC = ( Ybg ** normBGExp - Ytxt ** normTXTExp ) * scaleBoW; return (SAPC < 15 ) ? "0%" : SAPC.toPrecision(3) + "%";
} else { ///// For reverse polarity, white text on black
Ybg = (Ybg > blkThrs) ? Ybg : Ybg + Math.abs(Ybg - blkThrs) ** blkClmp;
SAPC = ( Ybg ** revBGExp - Ytxt ** revTXTExp ) * scaleWoB; return (SAPC > -15 ) ? "0%" : SAPC.toPrecision(3) + "%";
}
} // 其他省略,详细可看 code samples

最后

前端开发,掌握一些色彩搭配是非常有必要的。好的色彩搭配,能吸引用户的眼球。人人都喜欢美的事物。

google 搜索了一下,edge 89 也支持了呢,Microsoft Edge 89 (DevTools 中的新增)

edge

你使用过这个功能了吗?

新的颜色对比度算法-感知对比度算法APCA的更多相关文章

  1. Stanford大学机器学习公开课(三):局部加权回归、最小二乘的概率解释、逻辑回归、感知器算法

    (一)局部加权回归 通常情况下的线性拟合不能很好地预测所有的值,因为它容易导致欠拟合(under fitting).如下图的左图.而多项式拟合能拟合所有数据,但是在预测新样本的时候又会变得很糟糕,因为 ...

  2. 第三集 欠拟合与过拟合的概念、局部加权回归、logistic回归、感知器算法

    课程大纲 欠拟合的概念(非正式):数据中某些非常明显的模式没有成功的被拟合出来.如图所示,更适合这组数据的应该是而不是一条直线. 过拟合的概念(非正式):算法拟合出的结果仅仅反映了所给的特定数据的特质 ...

  3. 浅谈压缩感知(二十六):压缩感知重构算法之分段弱正交匹配追踪(SWOMP)

    主要内容: SWOMP的算法流程 SWOMP的MATLAB实现 一维信号的实验与结果 门限参数a.测量数M与重构成功概率关系的实验与结果 SWOMP与StOMP性能比较 一.SWOMP的算法流程 分段 ...

  4. 浅谈压缩感知(二十五):压缩感知重构算法之分段正交匹配追踪(StOMP)

    主要内容: StOMP的算法流程 StOMP的MATLAB实现 一维信号的实验与结果 门限参数Ts.测量数M与重构成功概率关系的实验与结果 一.StOMP的算法流程 分段正交匹配追踪(Stagewis ...

  5. [转]压缩感知重构算法之分段正交匹配追踪(StOMP)

    分段正交匹配追踪(StagewiseOMP)或者翻译为逐步正交匹配追踪,它是OMP另一种改进算法,每次迭代可以选择多个原子.此算法的输入参数中没有信号稀疏度K,因此相比于ROMP及CoSaMP有独到的 ...

  6. 压缩感知重构算法之OMP算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  7. 浅谈压缩感知(三十一):压缩感知重构算法之定点连续法FPC

    主要内容: FPC的算法流程 FPC的MATLAB实现 一维信号的实验与结果 基于凸优化的重构算法 基于凸优化的压缩感知重构算法. 约束的凸优化问题: 去约束的凸优化问题: 在压缩感知中,J函数和H函 ...

  8. 浅谈压缩感知(三十):压缩感知重构算法之L1最小二乘

    主要内容: l1_ls的算法流程 l1_ls的MATLAB实现 一维信号的实验与结果 前言 前面所介绍的算法都是在匹配追踪算法MP基础上延伸的贪心算法,从本节开始,介绍基于凸优化的压缩感知重构算法. ...

  9. 浅谈压缩感知(二十八):压缩感知重构算法之广义正交匹配追踪(gOMP)

    主要内容: gOMP的算法流程 gOMP的MATLAB实现 一维信号的实验与结果 稀疏度K与重构成功概率关系的实验与结果 一.gOMP的算法流程 广义正交匹配追踪(Generalized OMP, g ...

随机推荐

  1. python之字符串方法upper/lower

    1.描述: upper():用于将字符串全部转换为大写字母 lower():用于将字符串全部转换为小写字母 2.语法 str.upper() str.lower() 3.返回值 upper()或low ...

  2. C++ part6.5

    1.虚函数表建立和虚函数表指针初始化 虚拟函数表是在编译期就建立了,各个虚拟函数这时被组织成了一个虚拟函数的入口地址的数组.而虚函数表指针是在运行期,也就是构造函数被调用时进行初始化的,这是实现多态的 ...

  3. google 人机身份验证

    google 人机身份验证 Are you a robot? Introducing "No CAPTCHA reCAPTCHA" https://googleonlinesecu ...

  4. tree ignore & bash & cmd

    tree ignore & bash & cmd tree ignore https://unix.stackexchange.com/a/47806 https://zaiste.n ...

  5. Object to Array

    Object to Array objectToArray(obj = {}, title = `标题`){ let datas = []; if(Object.keys(obj).length) { ...

  6. SSR & 轮询登录 & Token

    SSR & 轮询登录 & Token https://yuchengkai.cn/docs/frontend 扫码登录原理 https://www.cnblogs.com/xgqfrm ...

  7. html2Canvas to Images

    <script> $(function () { var content = document.getElementById("shareImages"); conte ...

  8. NGK是如何运用IPFS分布式存储的?

    整个夏季,除了天气的火热,还有的火热莫过于IPFS挖矿这个领域了.IPFS的概念火热到,你可以看到到处都在卖IPFS矿机.那么,是什么原因导致IPFS这么火呢?在这之前,我们先了解一下什么是IPFS技 ...

  9. Differences between Stack and Heap

    本文转载自Differences between Stack and Heap Stack vs Heap So far we have seen how to declare basic type ...

  10. Maven报错:Unsupported major.minor version 51.0

    这个错误时因为JDK版本的问题,比如本机的JDK为1.6,但是项目编译时用的JDK为1.7那么就会出现这个异常,因为本机JDK版本较低不能执行编译版本为高版本的Class文件,各JDK版本对应的错误编 ...