zoj3494 BCD Code(AC自动机+数位dp)
Binary-coded decimal (BCD) is an encoding for decimal numbers in which each digit is represented by its own binary sequence. To encode a decimal number using the common BCD encoding,
each decimal digit is stored in a 4-bit nibble:
Decimal: 0 1 2 3 4 5 6 7 8 9
BCD: 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001
Thus, the BCD encoding for the number 127 would be:
0001 0010 0111
We are going to transfer all the integers from A to B, both inclusive, with BCD codes. But we find that some continuous bits, named forbidden code, may lead to errors.
If the encoding of some integer contains these forbidden codes, the integer can not be transferred correctly. Now we need your help to calculate how many integers can be transferred correctly.
Input
There are multiple test cases. The first line of input is an integer T ≈ 100 indicating the number of test cases.
The first line of each test case contains one integer N, the number of forbidden codes ( 0 ≤ N ≤ 100). Then N lines follow, each of which contains a 0-1 string
whose length is no more than 20. The next line contains two positive integers A and B. Neither A or B contains leading zeros and 0 < A ≤ B < 10200.
Output
For each test case, output the number of integers between A and B whose codes do not contain any of the N forbidden codes in their BCD codes. For the result
may be very large, you just need to output it mod 1000000009.
Sample Input
3
1
00
1 10
1
00
1 100
1
1111
1 100
Sample Output
3
9
98
题意:给出一些模式串,给出一个范围[A,B],求出区间内有多少个数,写成BCD之后,不包含模式串。
思路:先用AC自动机存下不符合的节点,然后预处理出bcd[i][j]表示ac自动机节点i走j这个数后的节点编号或者-1,然后用dp[i][j]表示前i位,当前ac节点为j的方案数。
#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<string>
#include<bitset>
#include<algorithm>
using namespace std;
typedef long long ll;
typedef long double ldb;
#define inf 99999999
#define pi acos(-1.0)
#define maxn 300050
#define maxnode 2050
#define MOD 1000000009
int bcd[maxnode][11]; //bcd[i][j]表示ac自动机状态i走j步后的状态
struct trie{
int sz,root,val[maxnode],next[maxnode][2],fail[maxnode];
int q[11111];
void init(){
int i;
sz=root=0;
val[0]=0;
for(i=0;i<2;i++){
next[root][i]=-1;
}
}
void charu(char *s){
int i,j,u=0;
int len=strlen(s);
for(i=0;i<len;i++){
int c=s[i]-'0';
if(next[u][c]==-1){
sz++;
val[sz]=0;
next[u][c]=sz;
u=next[u][c];
for(j=0;j<2;j++){
next[u][j]=-1;
}
}
else{
u=next[u][c];
}
}
val[u]=1;
}
void build(){
int i,j;
int front,rear;
front=1;rear=0;
for(i=0;i<2;i++){
if(next[root][i]==-1 ){
next[root][i]=root;
}
else{
fail[next[root][i] ]=root;
rear++;
q[rear]=next[root][i];
}
}
while(front<=rear){
int x=q[front];
if(val[fail[x]]) //!!!!!
val[x]=1;
front++;
for(i=0;i<2;i++){
if(next[x][i]==-1){
next[x][i]=next[fail[x] ][i];
}
else{
fail[next[x][i] ]=next[fail[x] ][i];
rear++;
q[rear]=next[x][i];
}
}
}
}
}ac;
int change(int jiedian,int num)
{
int i,j,len=0;
int shu[10];
while(num){
shu[++len]=num%2;
num/=2;
}
while(len<4)shu[++len]=0;
for(i=4;i>=1;i--){
if(ac.val[ac.next[jiedian][shu[i] ] ]==1 )return -1;
else jiedian=ac.next[jiedian][shu[i] ];
}
return jiedian;
}
void pre_init()
{
int i,j;
for(i=0;i<=ac.sz;i++){
for(j=0;j<=9;j++){
bcd[i][j]=change(i,j);
}
}
}
int wei[300];
ll dp[300][maxnode];
ll dfs(int pos,int jiedian,int lim,int zero)
{
int i,j;
if(pos==-1)return 1;
if(lim==0 && zero==0 && dp[pos][jiedian]!=-1){ //这里和下面同理,也不要省略zero==0
return dp[pos][jiedian];
}
int ed=lim?wei[pos]:9;
ll ans=0;
for(i=0;i<=ed;i++){
if(i==0){
if(zero){
ans+=dfs(pos-1,jiedian,0,1);
ans%=MOD;
}
else{
if(bcd[jiedian][0]!=-1){
ans+=dfs(pos-1,bcd[jiedian][0],lim&&i==ed,0);
ans%=MOD;
}
}
continue;
}
if(bcd[jiedian][i]!=-1){
ans+=dfs(pos-1,bcd[jiedian][i],lim&&i==ed,0);
ans%=MOD;
}
}
if(lim==0 && zero==0 ){ //这里要注意,不能写成if(lim==0)dp[pos][jiedian]=ans;因为zero不为0的话,即最高位还没有确定,那么可能后面几位都可以跳过去,
dp[pos][jiedian]=ans; //即可以把0跳过,但是对于最高位确定的情况下,后面不管加什么数都不能跳过去,即使是0也要在ac自动机上走0这个数.
}
return ans;
}
ll cal(char *s)
{
int i,j,len;
len=strlen(s);
for(i=0;i<len;i++){
wei[i]=s[len-1-i]-'0';
}
return dfs(len-1,0,1,1);
}
char s1[300],s2[300],s[30];
int main()
{
int n,m,i,j,T,len1,len2;
scanf("%d",&T);
while(T--)
{
ac.init();
scanf("%d",&n);
for(i=1;i<=n;i++){
scanf("%s",s);
ac.charu(s);
}
ac.build();
pre_init();
scanf("%s",s1);
len1=strlen(s1);
reverse(s1,s1+len1);
for(i=0;i<len1;i++){ //这里算的是(l,r],所以先要把s1的数减去1
if(s1[i]-'0'>0){
s1[i]--;break;
}
else{
s1[i]='9';
}
}
memset(dp,-1,sizeof(dp));
ll ans=0;
if(s1[len1-1]=='0')len1-=1;
s1[len1]='\0';
reverse(s1,s1+len1);
ans-=cal(s1);
ans%=MOD;
scanf("%s",s2);
ans+=cal(s2);
ans%=MOD;
if(ans<0){
ans=(ans+MOD)%MOD;
}
printf("%lld\n",ans);
}
return 0;
}
zoj3494 BCD Code(AC自动机+数位dp)的更多相关文章
- ZOJ 3494 BCD Code(AC自动机+数位DP)
BCD Code Time Limit: 5 Seconds Memory Limit: 65536 KB Binary-coded decimal (BCD) is an encoding ...
- zoj3494BCD Code(ac自动机+数位dp)
l链接 这题想了好一会呢..刚开始想错了,以为用自动机预处理出k长度可以包含的合法的数的个数,然后再数位dp一下就行了,写到一半发现不对,还要处理当前走的时候是不是为合法的,这一点无法移到trie树上 ...
- 【HDU3530】 [Sdoi2014]数数 (AC自动机+数位DP)
3530: [Sdoi2014]数数 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 682 Solved: 364 Description 我们称一 ...
- 【bzoj3530】[Sdoi2014]数数 AC自动机+数位dp
题目描述 我们称一个正整数N是幸运数,当且仅当它的十进制表示中不包含数字串集合S中任意一个元素作为其子串.例如当S=(22,333,0233)时,233是幸运数,2333.20233.3223不是幸运 ...
- BZOJ 3530 [SDOI2014]数数 (Trie图/AC自动机+数位DP)
题目大意:略 裸的AC自动机+数位DP吧... 定义f[i][x][0/1]表示已经匹配到了第i位,当前位置是x,0表示没到上限,1到上限,此时数是数量 然而会出现虚拟前导零,即前几位没有数字的情况, ...
- BCD Code ZOJ - 3494 AC自动机+数位DP
题意: 问A到B之间的所有整数,转换成BCD Code后, 有多少个不包含属于给定病毒串集合的子串,A,B <=10^200,病毒串总长度<= 2000. BCD码这个在数字电路课上讲了, ...
- ZOJ 3494 BCD Code(AC自动机 + 数位DP)题解
题意:每位十进制数都能转化为4位二进制数,比如9是1001,127是 000100100111,现在问你,在L到R(R <= $10^{200}$)范围内,有多少数字的二进制表达式不包含模式串. ...
- BZOJ3530:[SDOI2014]数数(AC自动机,数位DP)
Description 我们称一个正整数N是幸运数,当且仅当它的十进制表示中不包含数字串集合S中任意一个元素作为其子串.例如当S=(22,333,0233)时,233是幸运数,2333.20233.3 ...
- 【JZOJ3624】【SDOI2014】数数(count) AC自动机+数位dp
题面 100 容易想到使用AC自动机来处理禁忌子串的问题: 然后在自动机上数位dp,具体是: \(f_{i,j,0/1}\)表示填了\(i\)位,当前在自动机的第\(j\)个结点上,\(0\)表示当前 ...
随机推荐
- Linux复制某个目录下结构
Linux复制某个目录下结构 结合tree命令把当前目录下的文件夹路径存储到document.txt文件,然后再使用mkdir命令把document.txt文件下的目录输入创建: tree -fid ...
- maven仓库和镜像
目录 简介 本地仓库 远程仓库 远程仓库的更新 远程仓库的认证 部署到远程仓库 快照版本 依赖解析 镜像 本文主要是针对<maven实战>书中关键知识点的学习记录,未免有纰漏或描述不到之处 ...
- 一文读懂k8s之Pod安全策略
导读 Pod容器想要获取集群的资源信息,需要配置角色和ServiceAccount进行授权.为了更精细地控制Pod对资源的使用方式,Kubernetes从1.4版本开始引入了PodSecurityPo ...
- ObjectMapper将josn字符串转化为List
一.利用ObjectMapper将json字符串转为List Student.java package objectmapper; import java.io.Serializable; publi ...
- 细数JS中实用且强大的操作符&运算符
目录 1,前言 2,代码+应用 2.1,短路运算符 || 2.2,短路运算符 && 2.3,零合并操作符 ?? 2.4,可选链操作符 ?. 2.5,位运算符 & 和 | 2.6 ...
- vue3.0 composition API
一.Setup函数 1.创建时间:组件创建之前被调用,优先与created被调用,this指向的实例为window,created所指向的实例为proxy 2.this指向:不会指向组件实例 3.参数 ...
- Python+Selenium+Unittest实现PO模式web自动化框架(8)
1.main.py模块的功能 最后就是要有一个项目入口,并且是需要加载测试用例集. # --^_^-- coding:utf-8 --^_^-- # @Remark:运行入口 "" ...
- 删除HDFS中指定的文件。
1 import java.text.SimpleDateFormat; 2 import java.util.Scanner; 3 4 import org.apache.hadoop.fs.Fil ...
- cookie加密 当浏览器全面禁用三方 Cookie
cookie加密 cookie localstorage 区别 https://mp.weixin.qq.com/s/vHeRStcCUarwqsY7Y1rpGg 当浏览器全面禁用三方 ...
- Java面向对象(三)—— 继承
标签: java 继承 抽象类 this super abstract 概述 多个类中存在相同的属性和行为的时候,将这些内容抽取到单独一个类中,那么多个类无需在定义这些属性和行为,只要继承那个类即可. ...