7.6 NOI模拟赛 灯 根号分治
比较容易想的题目~
容易发现 点亮一种颜色的贡献=新增灯的数量-已经存在的边的条数。
用线段树维护并不容易。暴力的话复杂度是\(Q\cdot n\)的。
考虑根号分治 只单纯考虑度数<B的点的话 每次进行暴力 复杂度O(B).
考虑大于B的点的话 需要思考一下贡献如何快速求出。
这类点显然只有\(\frac{2n}{B}\)个 统计大于对大于的点的话复杂度O(B).
考虑大于和小于的贡献发现不能暴力了 考虑这个小于其实是之前的小于的点对当前的贡献。
那么当前的小于可以提前对这些点的贡献进行统计就可以O(1)了。
那么此时\(B\cdot Q+\frac{2n}{B}\cdot Q\)当B取\(\sqrt{2n}\)时最优。
code
//#include<bits\stdc++.h>
#include<iostream>
#include<iomanip>
#include<cstdio>
#include<cstring>
#include<string>
#include<ctime>
#include<cmath>
#include<cctype>
#include<cstdlib>
#include<queue>
#include<deque>
#include<stack>
#include<vector>
#include<algorithm>
#include<utility>
#include<bitset>
#include<set>
#include<map>
#define ll long long
#define db double
#define INF 10000000000000010ll
#define ldb long double
#define pb push_back
#define put_(x) printf("%d ",x);
#define get(x) x=read()
#define gt(x) scanf("%d",&x)
#define gi(x) scanf("%lf",&x)
#define put(x) printf("%d\n",x)
#define putl(x) printf("%lld\n",x)
#define gc(a) scanf("%s",a+1)
#define rep(p,n,i) for(RE int i=p;i<=n;++i)
#define go(x) for(int i=lin[x],tn=ver[i];i;tn=ver[i=nex[i]])
#define fep(n,p,i) for(RE int i=n;i>=p;--i)
#define vep(p,n,i) for(RE int i=p;i<n;++i)
#define pii pair<int,int>
#define mk make_pair
#define RE register
#define P 1000000007
#define gf(x) scanf("%lf",&x)
#define pf(x) ((x)*(x))
#define uint unsigned long long
#define ui unsigned
#define EPS 1e-8
#define sq sqrt
#define S second
#define F first
#define mod 1000000007
using namespace std;
char buf[1<<15],*fs,*ft;
inline char getc()
{
return (fs==ft&&(ft=(fs=buf)+fread(buf,1,1<<15,stdin),fs==ft))?0:*fs++;
}
inline int read()
{
RE int x=0,f=1;RE char ch=getc();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getc();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getc();}
return x*f;
}
const int MAXN=100010,maxn=410;
int B,n,Q,m,ans,id,len;
int out[MAXN],c[MAXN],a[MAXN],pos[MAXN],vis[MAXN];
int lin[MAXN],ver[MAXN<<1],nex[MAXN<<1],e[MAXN<<1];
int res[maxn],s[maxn],b[MAXN][maxn];
map<int,int>H[MAXN];
map<int,int>::iterator it;
inline void add(int x,int y,int z)
{
ver[++len]=y;
nex[len]=lin[x];
lin[x]=len;
e[len]=z;++out[x];
}
int main()
{
freopen("light.in","r",stdin);
freopen("light.out","w",stdout);
get(n);get(m);get(Q);
B=(int)sqrt(2*n*1.0);
rep(1,n,i)
{
get(a[i]);
++c[a[i]];
if(i>1)
{
if(a[i]==a[i-1])--c[a[i]];
else ++H[a[i]][a[i-1]],++H[a[i-1]][a[i]];
}
}
rep(1,m,i)for(it=H[i].begin();it!=H[i].end();++it)add(i,(*it).F,(*it).S);
rep(1,m,i)if(out[i]>B)pos[i]=++id,s[id]=i;
rep(1,m,j)go(j)if(pos[tn])b[j][pos[tn]]=e[i];
//res[x]表示此时有用的所有轻点对于重点的贡献.
rep(1,Q,T)
{
int get(x);
if(vis[x])
{
ans-=c[x];
if(pos[x])//O(1)+sqrt(m);
{
ans+=res[pos[x]];
rep(1,id,i)if(vis[s[i]])ans+=b[x][i];
}
else//暴力.sqrt(m)
{
go(x)
{
if(pos[tn])res[pos[tn]]-=e[i];
if(vis[tn])ans+=e[i];
}
}
}
else
{
ans+=c[x];
if(pos[x])
{
ans-=res[pos[x]];
rep(1,id,i)if(vis[s[i]])ans-=b[x][i];
}
else
{
go(x)
{
if(pos[tn])res[pos[tn]]+=e[i];
if(vis[tn])ans-=e[i];
}
}
}
vis[x]^=1;put(ans);
}
return 0;
}
7.6 NOI模拟赛 灯 根号分治的更多相关文章
- NOI.AC#2266-Bacteria【根号分治,倍增】
正题 题目链接:http://noi.ac/problem/2266 题目大意 给出\(n\)个点的一棵树,有一些边上有中转站(边长度为\(2\),中间有一个中转站),否则就是边长为\(1\). \( ...
- NOI模拟赛 Day1
[考完试不想说话系列] 他们都会做呢QAQ 我毛线也不会呢QAQ 悲伤ING 考试问题: 1.感觉不是很清醒,有点困╯﹏╰ 2.为啥总不按照计划来!!! 3.脑洞在哪里 4.把模拟赛当作真正的比赛,紧 ...
- 6.28 NOI模拟赛 好题 状压dp 随机化
算是一道比较新颖的题目 尽管好像是两年前的省选模拟赛题目.. 对于20%的分数 可以进行爆搜,对于另外20%的数据 因为k很小所以考虑上状压dp. 观察最后答案是一个连通块 从而可以发现这个连通块必然 ...
- 7.18 NOI模拟赛 因懒无名 线段树分治 线段树维护直径
LINK:因懒无名 20分显然有\(n\cdot q\)的暴力. 还有20分 每次只询问一种颜色的直径不过带修改. 容易想到利用线段树维护直径就可以解决了. 当然也可以进行线段树分治 每种颜色存一下直 ...
- 【2018.12.10】NOI模拟赛3
题目 WZJ题解 大概就是全场就我写不过 $FFT$ 系列吧……自闭 T1 奶一口,下次再写不出这种 $NTT$ 裸题题目我就艹了自己 -_-||| 而且这跟我口胡的自创模拟题 $set1$ 的 $T ...
- NOI 模拟赛
T1 Article 给 $m$ 个好串,定义一个字符串分割方案是好的当且仅当它分割出来的子串中"是好串的子串"的串长占原串串长超过 85%,定义一个好的分割方案的权值为这种分割方 ...
- NOI模拟赛 #4
好像只有一个串串题可以做... 不会 dp 和数据结构啊 QAQ 10 + 20 + 100 = 130 T1 一棵树,每个点有一个能量的最大容量 $l_i$ 和一个增长速度 $v_i$,每次可以选一 ...
- NOI 模拟赛 #3
打开题一看,咦,两道数数,一道猫式树题 感觉树题不可做呀,暴力走人 数数题数哪个呢?感觉置换比矩阵好一些 于是数了数第一题 100 + 0 + 15 = 115 T1 bishop 给若干个环,这些环 ...
- NOI 模拟赛 #2
得分非常惨惨,半个小时写的纯暴力 70 分竟然拿了 rank 1... 如果 OYJason 和 wxjor 在可能会被爆踩吧 嘤 T1 欧拉子图 给一个无向图,如果一个边集的导出子图是一个欧拉回路, ...
随机推荐
- css盒子模型的深入理解,在块级、行内元素的区别和特性
css盒子模型用于处理元素的内容.内边距.边框和外边距的方式简称.元素框的最内部分是实际的内容,直接包围内容的是内边距.内边距呈现了元素的背景.内边距的边缘是边框.边框以外是外边距,外边距默认是透明的 ...
- [PA2015]Siano 单调栈
由于某人找了个单调栈的题解但是没研究透所以让我们来研究............ 首先先来考虑下面一种情况,假设第\(k\)次切割时,天数为\(d_k\),高度为\(b_k\),第\(k+1\)次切割时 ...
- P3295 萌萌哒 题解
题目 一个长度为n的大数,用\(S_1,S_2,S_3...S_n\)表示,其中\(S_i\)表示数的第\(i\)位,\(S_1\)是数的最高位,告诉你一些限制条件,每个条 件表示为四个数,\(l_1 ...
- Report,又是一道思维题
题目: Each month Blake gets the report containing main economic indicators of the company "Blake ...
- Java基础笔记05-06-07-08
五.今日内容介绍 1.方法基础知识 2.方法高级内容 3.方法案例 01方法的概述 * A: 为什么要有方法 * 提高代码的复用性 * B: 什么是方法 * 完成特定功能的代码块. 02方法的定义格式 ...
- 在java中捕获异常时,使用log4j打印出错误堆栈信息
当java捕获到异常时,把详细的堆栈信息打印出来有助于我们排查异常原因,并修复相关bug,比如下面两张图,是打印未打印堆栈信息和打印堆栈信息的对比: 那么在使用log4j输出日志时,使用org.apa ...
- classpath路径(转)
src不是classpath, WEB-INF/classes,lib才是classpathWEB-INF/ 是资源目录, 客户端不能直接访问, 这话是没错,不过现在的IDE编译器在编译时会把src下 ...
- 数据可视化基础专题(四):Pandas基础(三) mysql导入与导出
转载(有添加.修改)作者:但盼风雨来_jc链接:https://www.jianshu.com/p/238a13995b2b來源:简书著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处 ...
- 【设计模式】MVC、MVP、MVVM
1.MVC模式: /** 模擬 Model, View, Controller */ var M = {}, V = {}, C = {}; /** Model 負責存放資料 */ M.data = ...
- 09-Python异常
一.简介 在实际的工作过程中,我们会遇到各种问题,比如文件不存在,代码运行不符合某些特定逻辑等,程序在运行时,遇到这些问题便会发生异常.英文是Exception. a = float(input('请 ...