转载请注明出处,楼燚(yì)航的blog,http://home.cnblogs.com/louyihang-loves-baiyan/

Vision_layer里面主要是包括了一些关于一些视觉上的操作,比如卷积、反卷积、池化等等。这里的类跟data layer一样好很多种继承关系。主要包括了这几个类,其中CuDNN分别是CUDA版本,这里先不讨论,在这里先讨论ConvolutionLayer

  • BaseConvolutionLayer
  • ConvolutionLaye
  • DeconvolutionLayer
  • CuDNNConvolutionLayer
  • Im2colLayer
  • LRNLayer
  • CuDNNLRNLayer
  • CuDNNLCNLayer
  • PoolingLayer
  • CuDNNPoolingLayer
  • SPPLayer

    这里我画了一个类图,将关系梳理了一下:

BaseConvolutionLayer

其继承自Layer,是一个卷积以及反卷积操作的基类,首先我们来看BaseConvolutionLayer的LayerSetUp函数

void BaseConvolutionLayer<Dtype>::LayerSetUp(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top)
//首先这里主要是在配置卷积kernel 的size,padding,stride以及inputs
ConvolutionParameter conv_param = this->layer_param_.convolution_param();
force_nd_im2col_ = conv_param.force_nd_im2col();
channel_axis_ = bottom[0]->CanonicalAxisIndex(conv_param.axis());
const int first_spatial_axis = channel_axis_ + 1;
const int num_axes = bottom[0]->num_axes();
num_spatial_axes_ = num_axes - first_spatial_axis;
CHECK_GE(num_spatial_axes_, 0);
vector<int> bottom_dim_blob_shape(1, num_spatial_axes_ + 1);
vector<int> spatial_dim_blob_shape(1, std::max(num_spatial_axes_, 1));
// 设置kernel的dimensions
kernel_shape_.Reshape(spatial_dim_blob_shape);
int* kernel_shape_data = kernel_shape_.mutable_cpu_data();

接着是设置相应的stride dimensions,对于2D,设置在h和w方向上的stride,代码太长列出简要的

pad_.Reshape(spatial_dim_blob_shape);
int* pad_data = pad_.mutable_cpu_data();
pad_data[0] = conv_param.pad_h();
pad_data[1] = conv_param.pad_w();
......一堆if else判断

对于kernel的pad也做相应设置

pad_.Reshape(spatial_dim_blob_shape);
int* pad_data = pad_.mutable_cpu_data();
pad_data[0] = conv_param.pad_h();
pad_data[1] = conv_param.pad_w();

接下来是对widhts 和bias左设置和填充,其中blob[0]里面存放的是filter weights,而blob[1]里面存放的是biases,当然biases是可选的,也可以没有

//设置相应的shape,并检查
vector<int> weight_shape(2);
weight_shape[0] = conv_out_channels_;
weight_shape[1] = conv_in_channels_ / group_; bias_term_ = this->layer_param_.convolution_param().bias_term();
vector<int> bias_shape(bias_term_, num_output_); //填充权重
this->blobs_[0].reset(new Blob<Dtype>(weight_shape));
shared_ptr<Filler<Dtype> > weight_filler(GetFiller<Dtype>(
this->layer_param_.convolution_param().weight_filler()));
weight_filler->Fill(this->blobs_[0].get());
//填充偏置项
if (bias_term_) {
this->blobs_[1].reset(new Blob<Dtype>(bias_shape));
shared_ptr<Filler<Dtype> > bias_filler(GetFiller<Dtype>(
this->layer_param_.convolution_param().bias_filler()));
bias_filler->Fill(this->blobs_[1].get());
}

ConvolutionLayer

ConvolutionLayer继承了BaseConvolutionLayer,主要作用就是将一副image做卷积操作,使用学到的filter的参数和biaes。同时在Caffe里面,卷积操作做了优化,变成了一个矩阵相乘的操作。其中有两个比较主要的函数是im2col以及col2im。

图中上半部分是一个传统卷积,下图是一个矩阵相乘的版本

下图是在一个卷积层中将卷积操作展开的具体操作过程,他里面按照卷积核的大小取数据然后展开,在同一张图里的不同卷积核选取的逐行摆放,不同N的话,就在同一行后面继续拼接,不同个可以是多个通道,但是需要注意的是同一行里面每一段都应该对应的是原图中中一个位置的卷积窗口。

对于卷积层中的卷积操作,还有一个group的概念要说明一下,groups是代表filter 组的个数。引入gruop主要是为了选择性的连接卷基层的输入端和输出端的channels,否则参数会太多。每一个group 和1/ group的input 通道和 1/group 的output通道进行卷积操作。比如有4个input, 8个output,那么1-4属于第一组,5-8属于第二个gruop

ConvolutionLayer里面,主要重写了Forward_cpu和Backward_cpu

void ConvolutionLayer<Dtype>::Forward_cpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top) {
const Dtype* weight = this->blobs_[0]->cpu_data();
for (int i = 0; i < bottom.size(); ++i) {
const Dtype* bottom_data = bottom[i]->cpu_data();
Dtype* top_data = top[i]->mutable_cpu_data();
for (int n = 0; n < this->num_; ++n) {
this->forward_cpu_gemm(bottom_data + n * this->bottom_dim_, weight,
top_data + n * this->top_dim_);
if (this->bias_term_) {
const Dtype* bias = this->blobs_[1]->cpu_data();
this->forward_cpu_bias(top_data + n * this->top_dim_, bias);
}
}
}
}

可以看到其实这里面他调用了forward_cpu_gemm,而这个函数内部又调用了math_function里面的caffe_cpu_gemm的通用矩阵相乘接口,GEMM的全称是General Matrix Matrix Multiply。其基本形式如下:

\[C=alpha*op( A )*op( B ) + beta*C,
\]

template <typename Dtype>
void ConvolutionLayer<Dtype>::Backward_cpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom) {
//反向传播梯度误差
const Dtype* weight = this->blobs_[0]->cpu_data();
Dtype* weight_diff = this->blobs_[0]->mutable_cpu_diff();
for (int i = 0; i < top.size(); ++i) {
const Dtype* top_diff = top[i]->cpu_diff();
const Dtype* bottom_data = bottom[i]->cpu_data();
Dtype* bottom_diff = bottom[i]->mutable_cpu_diff(); //如果有bias项,计算Bias导数
if (this->bias_term_ && this->param_propagate_down_[1]) {
Dtype* bias_diff = this->blobs_[1]->mutable_cpu_diff();
for (int n = 0; n < this->num_; ++n) {
this->backward_cpu_bias(bias_diff, top_diff + n * this->top_dim_);
}
}
//计算weight
if (this->param_propagate_down_[0] || propagate_down[i]) {
for (int n = 0; n < this->num_; ++n) {
// 计算weights权重的梯度
if (this->param_propagate_down_[0]) {
this->weight_cpu_gemm(bottom_data + n * this->bottom_dim_,
top_diff + n * this->top_dim_, weight_diff);
}
//计算botttom数据的梯度,下后传递
if (propagate_down[i]) {
this->backward_cpu_gemm(top_diff + n * this->top_dim_, weight,
bottom_diff + n * this->bottom_dim_);
}
}
}
}
}

Caffe源码解析5:Conv_Layer的更多相关文章

  1. Caffe源码解析7:Pooling_Layer

    转载请注明出处,楼燚(yì)航的blog,http://home.cnblogs.com/louyihang-loves-baiyan/ Pooling 层一般在网络中是跟在Conv卷积层之后,做采样 ...

  2. Caffe源码解析6:Neuron_Layer

    转载请注明出处,楼燚(yì)航的blog,http://home.cnblogs.com/louyihang-loves-baiyan/ NeuronLayer,顾名思义这里就是神经元,激活函数的相应 ...

  3. Caffe源码解析4: Data_layer

    转载请注明出处,楼燚(yì)航的blog,http://home.cnblogs.com/louyihang-loves-baiyan/ data_layer应该是网络的最底层,主要是将数据送给blo ...

  4. Caffe源码解析3:Layer

    转载请注明出处,楼燚(yì)航的blog,http://home.cnblogs.com/louyihang-loves-baiyan/ layer这个类可以说是里面最终的一个基本类了,深度网络呢就是 ...

  5. Caffe源码解析2:SycedMem

    转载请注明出处,楼燚(yì)航的blog,http://www.cnblogs.com/louyihang loves baiyan/ 看到SyncedMem就知道,这是在做内存同步的操作.这类个类的 ...

  6. Caffe源码解析1:Blob

    转载请注明出处,楼燚(yì)航的blog,http://www.cnblogs.com/louyihang-loves-baiyan/ 首先看到的是Blob这个类,Blob是作为Caffe中数据流通的 ...

  7. caffe源码解析

    http://blog.csdn.net/lanxuecc/article/details/53186613

  8. caffe源码阅读

    参考网址:https://www.cnblogs.com/louyihang-loves-baiyan/p/5149628.html 1.caffe代码层次熟悉blob,layer,net,solve ...

  9. 【Caffe】源码解析----caffe.proto (转载)

    分析caffe源码,看首先看caffe.proto,是明智的选择.好吧,我不是创造者,只是搬运工. 原文地址:http://blog.csdn.net/qq_16055159/article/deta ...

随机推荐

  1. 初探asp.net异步编程之await

    终于毕业了,也顺利进入一家期望的旅游互联网公司.27号入职.放肆了一个多月没写代码,好方啊. 另外一下观点均主要针对于await. 请先看这段话,来自async in C# 5.0.  接下来几个月的 ...

  2. EF架构~EF异步改造之路~仓储接口的改造

    回到目录 返回异步与并行目录 C#5.0带来了并行编程 {C#1.0托管代码→C#2.0泛型→C#3.0LINQ→C#4.0动态语言→C#5.0异步编程} 随着C#5.0在.net4.5出来之后,它们 ...

  3. 【C#进阶系列】22 CLR寄宿和AppDomain

    关于寄宿和AppDomain 微软开发CLR时,将它实现成包含在一个DLL中的COM服务器. 任何Windows应用程序都能寄宿(容纳)CLR.(简单来讲,就是CLR在一个DLL中,通过引用这个DLL ...

  4. sql where传入类型不同,造成查询结果差异问题

    话说故事是这样的.请听小生慢慢道来: 原有数据样式如下: 正常结果: 问题展现: 此问题主要原因如下: 以下皆可在官网中找到: 为数据类型从高到低依次:(ps:小生用翻译工具翻译,就不在此献丑了) 根 ...

  5. swoole_redis 记一次看文档不仔细做警醒

    测试代码 $redisClass = new Redis(); $redisClass->connect('127.0.0.1', 6379, 1); $result = $redisClass ...

  6. 深入理解cookies

    HTTP cookies,通常又称作"cookies",已经存在了很长时间,但是仍旧没有被予以充分的理解.首要的问题是存在了诸多误区,认为cookies是后门程序或病毒,或压根不知 ...

  7. 高性能 TCP & UDP 通信框架 HP-Socket v3.2.3

    HP-Socket 是一套通用的高性能 TCP/UDP 通信框架,包含服务端组件.客户端组件和 Agent 组件,广泛适用于各种不同应用场景的 TCP/UDP 通信系统,提供 C/C++.C#.Del ...

  8. 从头开始搭建一个dubbo+zookeeper平台

    本篇主要是来分享从头开始搭建一个dubbo+zookeeper平台的过程,其中会简要介绍下dubbo服务的作用. 首先,看下一般网站架构随着业务的发展,逻辑越来越复杂,数据量越来越大,交互越来越多之后 ...

  9. Spring(二)__bean的装配

    Bean的装配: 在spring容器内拼凑bean叫做装配.装 配bean的时候,需要告诉容器哪些bean 以及容器如何使用依赖注入将它们配合在一起. 上下文定义文件的根元素是<beans> ...

  10. Json to JObject转换的使用方法

    Linq to JSON是用来操作JSON对象的.可以用于快速查询,修改和创建JSON对象.当JSON对象内容比较复杂,而我们仅仅需要其中的一小部分数据时,可以考虑使用Linq to JSON来读取和 ...