题目

On another floor of the A.R.C. Markland-N, the young man Simon "Xenon" Jackson, takes a break after finishing his project early (as always). Having a lot of free time, he decides to put on his legendary hacker "X" instinct and fight against the gangs of the cyber world.

His target is a network of \(n\) small gangs. This network contains exactly \(n−1\) direct links, each of them connecting two gangs together. The links are placed in such a way that every pair of gangs is connected through a sequence of direct links.

By mining data, Xenon figured out that the gangs used a form of cross-encryption to avoid being busted: every link was assigned an integer from \(0\) to \(n−2\) such that all assigned integers are distinct and every integer was assigned to some link. If an intruder tries to access the encrypted data, they will have to surpass \(S\) password layers, with \(S\) being defined by the following formula:

\[s=\sum_{1\le u \le v \le n} mex(u,v)
\]

Here, \(mex(u,v)\) denotes the smallest non-negative integer that does not appear on any link on the unique simple path from gang \(u\) to gang \(v\).

Xenon doesn't know the way the integers are assigned, but it's not a problem. He decides to let his AI's instances try all the passwords on his behalf, but before that, he needs to know the maximum possible value of \(S\), so that the AIs can be deployed efficiently.

Now, Xenon is out to write the AI scripts, and he is expected to finish them in two hours. Can you find the maximum possible \(S\) before he returns?

输入格式

The first line contains an integer \(n (2 \le n \le 3000)\), the number of gangs in the network.

Each of the next n−1 lines contains integers \(u_i\) and \(v_i (1 \le u_i,v_i \le n; u_i \ne v_i)\), indicating there's a direct link between gangs \(u_i\) and \(v_i\).

It's guaranteed that links are placed in such a way that each pair of gangs will be connected by exactly one simple path.

输出格式

print the maximum possible value of \(S\) — the number of password layers in the gangs' network.

样例输入1

3
1 2
2 3

样例输出1

3

样例输入1

5
1 2
1 3
1 4
3 5

样例输出1

10

注意

In the first example, one can achieve the maximum \(S\) with the following assignment:

With this assignment, \(mex(1,2)=0\), \(mex(1,3)=24\) and \(mex(2,3)=1\). Therefore, \(S=0+2+1=3\).

In the second example, one can achieve the maximum \(S\) with the following assignment:

With this assignment, all non-zero mex value are listed below:

  • \(mex(1,3)=1\)
  • \(mex(1,5)=2\)
  • \(mex(2,3)=1\)
  • \(mex(2,5)=2\)
  • \(mex(3,4)=1\)
  • \(mex(4,5)=3\)

Therefore, \(S=1+2+1+2+1+3=10\).

题解

看一下样例2

首先考虑边权为\(0\)的这条边,只要通过这条边的,最小的整数就是\(1\)了,那么经过这条边路径的个数就是\(0\)贡献的代价,即这条边右边的点数量乘左边点数量:\(2 \times 3 = 6\)

再考虑\(1\),如果单独考虑它,经过它的最小整数是\(0\),对答案没有一点贡献了,所以必须和1组合起来,那么把\(0-1\)看做一个整体,右边一个点,左边3个点,所以贡献就是\(1 \times 3 = 3\)

注意这里的贡献是1的原因是之前已经有一层1的贡献,这里是2的贡献,所以每条链只多了1的贡献

对于\(2\),必须和\(0,1\)组合起来,而且只能考虑\(2-0-1\)这一条链,所以左边1个点,右边1个点,贡献就是\(1 \times 1 = 1\)

对于\(3\),无法构成一条链,贡献就是\(0\)

所以加起来就是\(10\),和样例输出一样

注意从小到大所有权值必须在一条链上,如果不够成一条链,比如\(3\),最小整数就是\(0\),相当于没有贡献了

简化模型,只考虑一条链

设\(dp_{i,j}\)为从\(i\)到\(j\)的\(S\)最大值

然后把左边的点数后右边点数的积加上中间的链的dp值,中间的dp值就可以用递归实现.

注意这里的递归可以使用记忆化搜索.

#include <cstdio>
#include <cstring>
#define max(a, b) ((a) > (b) ? (a) : (b))
const int maxn = 3005;
long long dp[maxn][maxn], cnt[maxn][maxn], ans;
int fa[maxn][maxn], head[maxn << 1], next[maxn << 1], to[maxn << 1], n, x, y, ct;
void dfs(int x, int f, int root) {
cnt[root][x] = 1;
fa[root][x] = f;
for (int i = head[x]; i; i = next[i]) {
if (to[i] == f) continue;
dfs(to[i], x, root);
cnt[root][x] += cnt[root][to[i]];
}
}
long long dpf(int x, int y) {
if (x == y) return 0;
if (dp[x][y] != -1) return dp[x][y];
return dp[x][y] = cnt[y][x] * cnt[x][y] + max(dpf(fa[y][x], y), dpf(x, fa[x][y]));
}
int main() {
scanf("%d", &n);
for (int i = 1; i < n; i++) {
scanf("%d%d", &x, &y);
to[++ct] = --y, next[ct] = head[--x], head[x] = ct;
to[++ct] = x, next[ct] = head[y], head[y] = ct;
}
for (int i = 0; i < n; i++) dfs(i, -1, i);
memset(dp, -1, sizeof(dp));
for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++) ans = max(ans, dpf(i, j));
printf("%lld", ans);
}

Codeforces 1292C Xenon's Attack on the Gangs 题解的更多相关文章

  1. CF1292C Xenon's Attack on the Gangs 题解

    传送门 题目描述 输入格式 输出格式 题意翻译 给n个结点,n-1条无向边.即一棵树.我们需要给这n-1条边赋上0~ n-2不重复的值.mex(u,v)表示从结点u到结点v经过的边权值中没有出现的最小 ...

  2. CF1292C Xenon's Attack on the Gangs

    题目链接:https://codeforces.com/problemset/problem/1292/C 题意 在一颗有n个节点的树上,给每个边赋值,所有的值都在\([0,n-2]\)内并且不重复, ...

  3. Xenon's Attack on the Gangs(树规)

    题干 Input Output Example Test 1: Test 2: 3 5 1 2 1 2 2 3 1 3 1 4 3 5 3 10 Tips 译成人话 给n个结点,n-1条无向边.即一棵 ...

  4. Xenon's Attack on the Gangs,题解

    题目: 题意: 有一个n个节点的树,边权为0-n-2,定义mex(a,b)表示除了ab路径上的自然数以外的最小的自然数,求如何分配边权使得所有的mex(a,b)之和最大. 分析: 看似有点乱,我们先不 ...

  5. 【树形DP】CF 1293E Xenon's Attack on the Gangs

    题目大意 vjudge链接 给n个结点,n-1条无向边.即一棵树. 我们需要给这n-1条边赋上0~ n-2不重复的值. mex(u,v)表示从结点u到结点v经过的边权值中没有出现的最小非负整数. 计算 ...

  6. Codeforces Round #609 (Div. 2)前五题题解

    Codeforces Round #609 (Div. 2)前五题题解 补题补题…… C题写挂了好几个次,最后一题看了好久题解才懂……我太迟钝了…… 然后因为longlong调了半个小时…… A.Eq ...

  7. Educational Codeforces Round 48 (Rated for Div. 2) CD题解

    Educational Codeforces Round 48 (Rated for Div. 2) C. Vasya And The Mushrooms 题目链接:https://codeforce ...

  8. Codeforces Round #542 [Alex Lopashev Thanks-Round] (Div. 2) 题解

    Codeforces Round #542 [Alex Lopashev Thanks-Round] (Div. 2) 题目链接:https://codeforces.com/contest/1130 ...

  9. Educational Codeforces Round 59 (Rated for Div. 2) DE题解

    Educational Codeforces Round 59 (Rated for Div. 2) D. Compression 题目链接:https://codeforces.com/contes ...

随机推荐

  1. Linux目录处理命令cd、pwd、rmdir、cp、mv、rm详解

    命令cd详解 命令cd(英文原意:change directory),命令路径及执行权限为: 可以看到它的路径为/usr/bin/cd,因此,它的执行权限是所有用户 基本功能是切换目录,例如:cd . ...

  2. 简述hadoop安装步骤

    简述hadoop安装步骤 安装步骤: 1.安装虚拟机系统,并进行准备工作(可安装- 一个然后克隆) 2.修改各个虚拟机的hostname和host 3.创建用户组和用户 4.配置虚拟机网络,使虚拟机系 ...

  3. PAT 1038 Recover the Smallest Number (30分) string巧排序

    题目 Given a collection of number segments, you are supposed to recover the smallest number from them. ...

  4. @luogu - P6109@ [Ynoi2009]rprmq

    目录 @description@ @solution@ @accepted code@ @details@ @description@ 有一个 n×n 的矩阵 a,初始全是 0,有 m 次修改操作和 ...

  5. (四)MySQL条件查询(通配符、模糊查询)、排序查询、分组查询(单行、分组函数)

    一.条件查询 1.含义:前面学的基础查询可以查询一个或多个字段,如果需要的数据仅仅是其中的某一行或多行就用到了条件查询. 2.语法:(序号表示语句执行顺序) SELECT 字段名 ③ FROM 表名 ...

  6. TensorFlow从0到1之TensorFlow损失函数(12)

    正如前面所讨论的,在回归中定义了损失函数或目标函数,其目的是找到使损失最小化的系数.本节将介绍如何在 TensorFlow 中定义损失函数,并根据问题选择合适的损失函数. 声明一个损失函数需要将系数定 ...

  7. .NET进行客户端Web开发又一利器 - Ant Design Blazor

    你好,我是Dotnet9,继上篇介绍Bootstrap风格的BlazorUI组件库后,今天我来介绍另一款Blazor UI组件库:一套基于 Ant Design 和 Blazor 的企业级组件库. 本 ...

  8. koa2 的使用方法:(一)

    1. koa2 使用方法: 安装指令是: npm install koa2 使用koa2 创建项目工程: 1. koa2 (项目工程) 2. 进入项目工程: cd 进入您所创建的项目工程 3. npm ...

  9. MySQL服务器是怎么处理客户端请求的

    不论MySQL客户端进程和服务器进程是采用哪种方式进行通信,最后实现的效果都是:客户端进程向服务器进程发送一段文本(MySQL语句),服务器进程处理后再向客户端进程发送一段文本(处理结果).那服务器进 ...

  10. 调用php命令出错

    调用php -v命令.php artisan route:list等命令均出现一下错误. MIB search path: c:/usr/share/snmp/mibsCannot find modu ...