NOI2012 随机数生成器

题目描述

栋栋最近迷上了随机算法,而随机数是生成随机算法的基础。栋栋准备使用线性同余法(Linear Congruential Method)来生成一个随机数列,这种方法需要设置四个非负整数参数 \(m,a,c,X_0\),按照下面的公式生成出一系列随机数 \(\{X_n\}\):

\[X_{n+1}=(aX_n +c)\bmod m
\]

其中\(mod\ m\) 表示前面的数除以 \(m\) 的余数。从这个式子可以看出,这个序列的下一个数总是由上一个数生成的。

栋栋知道这样产生的序列具有良好的随机性,不过心急的他仍然想尽快知道 \(X_n\) 是多少。由于栋栋需要的随机数是 \(0,1,\dots,g-1\) 之间的,他需要将 \(X_n\)​ 除以 \(g\) 取余得到他想要的数,即 \(X_n \bmod g\),你只需要告诉栋栋他想要的数 \(X_n \bmod g\) 是多少就可以了。

输入格式

一行 \(6\) 个用空格分割的整数 \(m,a,c,X_0,n\) 和 \(g\),其中 \(a,c,X_0\) 是非负整数,\(m,n,g\) 是正整数。

输出格式

输出一个数,即 \(X_n \bmod g\)。

输入输出样例

输入

11 8 7 1 5 3

输出

2

说明/提示

计算得 \(X_n=X_5=8\),故\((X_n \bmod g) = (8 \bmod 3) = 2\)。

对于 \(100\%\) 的数据,\(n,m,a,c,X_0\leq 10^{18}\),\(1\leq g\leq 10^8\),\(n,m\geq 1\),\(a,c,X_0\geq 0\)。

题意

给出了一个迷惑式子,让你算出来式子的第\(n\)项,然后\(mod\ g\)的结果

分析

看到这样一个个的递推式子,一个个用\(for\)循环来推肯定不行,所以很容易就会想到要用到矩阵快速幂来求。那么我们现在的主要任务就是构造矩阵来进行乘法运算。

首先看到题目中给出的式子:

\[X_{n+1}=(aX_n+c)\ mod\ m
\]

取模运算可以暂且先不看,因为对结果没什么影响,在矩阵乘法的时候进行取模就行了。所以转化成如下式子:

\[X_{n+1}=aX_n+c
\]

那么我们就可以根据这个式子来构造矩阵。由矩阵的乘法运算为结果矩阵的\(i\)行\(j\)列为前边矩阵一个的第\(i\)行乘以另一个的第\(j\)列,所以我们可以得出如下的矩阵递推式子:

\[\left[
\begin{matrix}
X_{n-1}\\
c
\end{matrix}
\right]\times \left[
\begin{matrix}
a & 1\\
0 & 1
\end{matrix}
\right] = \left[
\begin{matrix}
X_{n}\\
c
\end{matrix}
\right]
\]

这里用\(X_{n-1}\)这一列分别乘以右边矩阵的第一第二行,得到结果的矩阵,那么我们就可以根据这个递推式子来进行矩阵快速幂。

这里乘法的运算过程如下:

\[X_{n-1}\times a+c\times 1 = X_n
\]

\[X_{n-1}\times 0+c\times 1 = c
\]

由此得到结果矩阵

这里的矩阵做乘法的时候需要用到龟速乘,不然会爆\(long\ long\)

代码

#include<bits/stdc++.h>
using namespace std;
#define int long long
struct Node{//矩阵结构体
int a[5][5];
};
int m,a,c,x0,g,n;
int ksj(int a,int b){//龟速乘
int ans = 0;
while(b){
if(b & 1)ans = (ans + a) % m;
a = (a + a) % m;
b >>= 1;
}
return ans;
}
Node Mul(Node a,Node b,int c){//矩阵乘法,记得取模
Node ans;
memset(ans.a,0,sizeof(ans.a));
for(int i=1;i<=2;++i){
for(int j=1;j<=2;++j){
for(int k=1;k<=2;++k){
ans.a[i][j] = (ans.a[i][j] + ksj(a.a[i][k],b.a[k][j])%c)%c;
}
}
}
return ans;
}
Node ans;
void qpow(Node &ans,Node b,int c){//矩阵快速幂
while(c){
if(c & 1)ans = Mul(b,ans,m);
b = Mul(b,b,m);
c >>= 1;
}
}
signed main(){
Node bas;
scanf("%lld%lld%lld%lld%lld%lld",&m,&a,&c,&x0,&n,&g);
ans.a[1][1] = x0;//初始化矩阵
ans.a[2][1] = c;
bas.a[1][1] = a;
bas.a[1][2] = 1;
bas.a[2][1] = 0;
bas.a[2][2] = 1;
qpow(ans,bas,n);
printf("%lld\n",ans.a[1][1] % g);//得答案
}

[NOI2012]随机数生成器【矩阵快速幂】的更多相关文章

  1. BZOJ 2875: [Noi2012]随机数生成器( 矩阵快速幂 )

    矩阵快速幂...+快速乘就OK了 ----------------------------------------------------------------------------------- ...

  2. [luogu2044][NOI2012] 随机数生成器 [矩阵快速幂]

    题面: 传送门 思路: 看一眼这个公式: $x\left[n+1\right]=\left(a\ast x\left[n\right]+c\right) mod m$ 递推,数据范围$n\leq 10 ...

  3. [日常摸鱼]bzoj2875[NOI2012]随机数生成器-矩阵快速幂

    好裸的矩阵快速幂-然而我一开始居然构造不出矩阵- 平常两个的情况都是拿相邻两项放在矩阵里拿去递推的-然后我就一直构造不出来-其实把矩阵下面弄成1就好了啊orz #include<cstdio&g ...

  4. bzoj2875随机数生成器——矩阵快速幂

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2875 矩阵快速幂,把x和c分开求,最后加上即可: 为防止爆long long,要用快速乘. ...

  5. Bzoj 2875: [Noi2012]随机数生成器(矩阵乘法)

    2875: [Noi2012]随机数生成器 Time Limit: 10 Sec Memory Limit: 512 MB Submit: 2052 Solved: 1118 Description ...

  6. [NOI2012]随机数生成器 矩阵乘法

    Code: #include<cstdio> #include<algorithm> #include<iostream> #include<cstring& ...

  7. 矩阵(快速幂):COGS 963. [NOI2012] 随机数生成器

    963. [NOI2012] 随机数生成器 ★★   输入文件:randoma.in   输出文件:randoma.out   简单对比 时间限制:1 s   内存限制:128 MB [问题描述] 栋 ...

  8. 【BZOJ2875】【NOI2012】随机数生成器(矩阵快速幂)

    [BZOJ2875]随机数生成器(矩阵快速幂) 题面 Description 栋栋最近迷上了随机算法,而随机数是生成随机算法的基础.栋栋准备使用线性同余法(Linear Congruential Me ...

  9. BZOJ-2875 随机数生成器 矩阵乘法快速幂+快速乘

    题目没给全,吃X了... 2875: [Noi2012]随机数生成器 Time Limit: 10 Sec Memory Limit: 512 MB Submit: 1479 Solved: 829 ...

随机推荐

  1. Android/iOS内嵌Unity开发示例

    Unity 与 Android/iOS 交叉开发主要有两种方式,以 Android 为例,一是 Android 生成 jar 或者 aar 包,导入到 unity3d plugin/bin/ 目录下: ...

  2. flask 源码专题(三):请求上下文和应用上下文入栈与出栈

    1.请求上下文和应用上下文入栈 # 将ctx入栈,但是内部也将应用上下文入栈 ctx.push() def push(self): # 获取到的 top == ctx top = _request_c ...

  3. Python函数07/有参装饰器/多个装饰器装饰一个函数

    Python函数07/有参装饰器/多个装饰器装饰一个函数 目录 Python函数07/有参装饰器/多个装饰器装饰一个函数 内容大纲 1.有参装饰器 2.多个装饰器装饰一个函数 3.今日总结 3.今日练 ...

  4. Spring升级案例之IOC介绍和依赖注入

    Spring升级案例之IOC介绍和依赖注入 一.IOC的概念和作用 1.什么是IOC 控制反转(Inversion of Control, IoC)是一种设计思想,在Java中就是将设计好的对象交给容 ...

  5. 抛出这8个问题,检验一下你到底会不会ThreadLocal,来摸个底~

    0.问题 和Synchronized的区别 存储在jvm的哪个区域 真的只是当前线程可见吗 会导致内存泄漏么 为什么用Entry数组而不是Entry对象 你学习的开源框架哪些用到了ThreadLoca ...

  6. 【Nginx】如何使用Nginx搭建流媒体服务器实现直播?看完这篇我会了!!

    写在前面 最近几年,直播行业比较火,无论是传统行业的直播,还是购物.游戏.教育,都在涉及直播.作为在互联网行业奋斗了多年的小伙伴,你有没有想过如果使用Nginx搭建一套直播环境,那我们该如何搭建呢?别 ...

  7. java 集合区别

    TreeMap和TreeSet的区别 相同点: TreeMap和TreeSet都是有序的集合,也就是说他们存储的值都是排好序的. TreeMap和TreeSet都是非同步集合,因此他们不能在多线程之间 ...

  8. 微型计算机系统实验总结(学习性实验:IO地址译码,可编程并行接口8255,交通灯控制实验 + 自主设计实验:汽车信号灯控制系统,电风扇控制器,洗衣机控制系统,霓虹灯,电梯控制系统)

    实验配套软件: https://download.csdn.net/download/qq_39932172/11221584 实验指导用书: 教师版: https://download.csdn.n ...

  9. text输入框

    https://blog.csdn.net/renhong20121314/article/details/51906555

  10. python3 httpConnection——post请求

    #coding=utf-8 import http.clientimport urllib.parse #与服务器建立链接url = 'code.ali.cn:80' conn = http.clie ...