Solidity – 算术运算符

Solidity 支持的算术运算符,如下表所示:

假设变量A的值为10,变量B的值为20。

序号 运算符与描述
1 + (加)
求和
例: A + B = 30
2 – (减)
相减
例: A – B = -10
3 * (乘)
相乘
例: A * B = 200
4 / (除)
相除
例: B / A = 2
5 % (取模)
取模运算
例: B % A = 0
6 ++ (递增)
递增
例: A++ = 11
7 — (递减)
递减
例: A– = 9

示例

下面的代码展示了如何使用算术运算符。

pragma solidity ^0.5.0;

contract SolidityTest {
constructor() public{
}
function getResult() public view returns(uint){
uint a = 1;
uint b = 2;
uint result = a + b; // 算术运算
return result;
}
}

Solidity – 比较运算符

Solidity 支持的比较运算符,如下表所示:

序号 运算符与描述
1 == (等于)
2 != (不等于)
3 > (大于)
4 < (小于)
5 >= (大于等于)
6 <= (小于等于)

下面的代码展示了如何使用比较运算符。

pragma solidity ^0.5.0;

contract SolidityTest {
uint storedData;
constructor() public{
storedData = 10;
}
function getResult() public view returns(string memory){
uint a = 1; // 局部变量
uint b = 2;
uint result = a + b;
return integerToString(result);
}
function integerToString(uint _i) internal pure
returns (string memory _uintAsString) { if (_i == 0) { // 比较运算符
return "";
}
uint j = _i;
uint len; while (j != 0) { // 比较运算符
len++;
j /= 10;
}
bytes memory bstr = new bytes(len);
uint k = len - 1; while (_i != 0) {
bstr[k--] = byte(uint8(48 + _i % 10));
_i /= 10;
}
return string(bstr);// 访问局部变量
}
}

Solidity – 逻辑运算符

Solidity 支持的逻辑运算符,如下表所示:

假设变量A的值为10,变量B的值为20。

序号 运算符与描述
1 && (逻辑与)
如果两个操作数都非零,则条件为真。
例: (A && B) 为真
2 || (逻辑或)
如果这两个操作数中有一个非零,则条件为真。
例: (A || B) 为真
3 ! (逻辑非)
反转操作数的逻辑状态。如果条件为真,则逻辑非操作将使其为假。
例: ! (A && B) 为假

示例

下面的代码展示了如何使用逻辑运算符

pragma solidity ^0.5.0;

contract SolidityTest {
uint storedData; // 状态变量
constructor() public{
storedData = 10;
}
function getResult() public view returns(string memory){
uint a = 1; // 局部变量
uint b = 2;
uint result = a + b;
return integerToString(storedData); // 访问状态变量
}
function integerToString(uint _i) internal pure
returns (string memory) { if (_i == 0) {
return "";
}
uint j = _i;
uint len; while (!(j == 0)) { // 逻辑运算符
len++;
j /= 10;
}
bytes memory bstr = new bytes(len);
uint k = len - 1; while (_i != 0) {
bstr[k--] = byte(uint8(48 + _i % 10));
_i /= 10;
}
return string(bstr);
}
}

Solidity – 位运算符

Solidity 支持的位运算符,如下表所示:

假设变量A的值为2,变量B的值为3。

序号 运算符与描述
1 & (位与)
对其整数参数的每个位执行位与操作。
例: (A & B) 为 2.
2 | (位或)
对其整数参数的每个位执行位或操作。
例: (A | B) 为 3.
3 ^ (位异或)
对其整数参数的每个位执行位异或操作。
例: (A ^ B) 为 1.
4 ~ (位非)
一元操作符,反转操作数中的所有位。
例: (~B) 为 -4.
5 << (左移位))
将第一个操作数中的所有位向左移动,移动的位置数由第二个操作数指定,新的位由0填充。将一个值向左移动一个位置相当于乘以2,移动两个位置相当于乘以4,以此类推。
例: (A << 1) 为 4.
6 >> (右移位)
左操作数的值向右移动,移动位置数量由右操作数指定
例: (A >> 1) 为 1.

示例

下面的代码展示了如何使用位运算符

pragma solidity ^0.5.0;

contract SolidityTest {
uint storedData;
constructor() public{
storedData = 10;
}
function getResult() public view returns(string memory){
uint a = 2; // 局部变量
uint b = 2;
uint result = a & b; // 位与
return integerToString(result);
}
function integerToString(uint _i) internal pure
returns (string memory) {
if (_i == 0) {
return "";
}
uint j = _i;
uint len; while (j != 0) {
len++;
j /= 10;
}
bytes memory bstr = new bytes(len);
uint k = len - 1; while (_i != 0) {
bstr[k--] = byte(uint8(48 + _i % 10));
_i /= 10;
}
return string(bstr);// 访问局部变量
}
}

Solidity – 赋值运算符

Solidity 支持的赋值运算符,如下表所示:

序号 运算符与描述
1 = (简单赋值)
将右侧操作数的值赋给左侧操作数
例: C = A + B 表示 A + B 赋给 C
2 += (相加赋值)
将右操作数添加到左操作数并将结果赋给左操作数。
例: C += A 等价于 C = C + A
3 −= (相减赋值)
从左操作数减去右操作数并将结果赋给左操作数。
例: C -= A 等价于 C = C – A
4 *= (相乘赋值)
将右操作数与左操作数相乘,并将结果赋给左操作数。
例: C *= A 等价于 C = C * A
5 /= (相除赋值)
将左操作数与右操作数分开,并将结果分配给左操作数。
例: C /= A 等价于 C = C / A
6 %= (取模赋值)
使用两个操作数取模,并将结果赋给左边的操作数。
例: C %= A 等价于 C = C % A

注意 – 同样的逻辑也适用于位运算符,因此它们将变成<<=>>=>>=&=|=^=

下面的代码展示了如何使用赋值运算符。

pragma solidity ^0.5.0;

contract SolidityTest {
uint storedData;
constructor() public{
storedData = 10;
}
function getResult() public view returns(string memory){
uint a = 1;
uint b = 2;
uint result = a + b;
return integerToString(storedData);
}
function integerToString(uint _i) internal pure
returns (string memory) {
if (_i == 0) {
return "";
}
uint j = _i;
uint len;
while (j != 0) {
len++;
j /= 10; // 赋值运算
}
bytes memory bstr = new bytes(len);
uint k = len - 1;
while (_i != 0) {
bstr[k--] = byte(uint8(48 + _i % 10));
_i /= 10;// 赋值运算
}
return string(bstr); // 访问局部变量
}
}

Solidity – 条件运算符

Solidity 支持条件运算符。

序号 运算符与描述
1 ? : (条件运算符 )
如果条件为真 ? 则取值X : 否则值Y

示例

下面的代码展示了如何使用这个运算符

pragma solidity ^0.5.0;

contract SolidityTest {
uint storedData;
constructor() public{
storedData = 10;
}
function getResult() public view returns(string memory){
uint a = 1; // 局部变量
uint b = 2;
uint result = (a > b? a: b); //条件运算
return integerToString(result);
}
function integerToString(uint _i) internal pure
returns (string memory) {
if (_i == 0) {
return "";
}
uint j = _i;
uint len;
while (j != 0) {
len++;
j /= 10;
}
bytes memory bstr = new bytes(len);
uint k = len - 1;
while (_i != 0) {
bstr[k--] = byte(uint8(48 + _i % 10));
_i /= 10;
}
return string(bstr);
}
}

参考区块链入门到实战(31)之Solidity – 第一个程序运行

区块链入门到实战(36)之Solidity – 运算符的更多相关文章

  1. 区块链入门到实战(38)之Solidity – 条件语句

    Solidity支持条件语句,让程序可以根据条件执行不同的操作.条件语句包括: if if...else if...else if 语法 if (条件表达式) { 被执行语句(如果条件为真) } 示例 ...

  2. 区块链入门到实战(37)之Solidity – 循环语句

    与其他语言类似,Solidity语言支持循环结构,Solidity提供以下循环语句. while do ... while for 循环控制语句:break.continue. Solidity – ...

  3. 区块链入门到实战(34)之Solidity – 变量

    Solidity 支持三种类型的变量: 状态变量 – 变量值永久保存在合约存储空间中的变量. 局部变量 – 变量值仅在函数执行过程中有效的变量,函数退出后,变量无效. 全局变量 – 保存在全局命名空间 ...

  4. 区块链入门到实战(30)之Solidity – 基础语法

    一个 Solidity 源文件可以包含任意数量的合约定义.import指令和pragma指令. 让我们从一个简单的 Solidity 源程序开始.下面是一个 Solidity 源文件的例子: prag ...

  5. 区块链入门到实战(28)之Solidity – 介绍

    Solidity语言是一种面向合约的高级编程语言,用于在以太坊区块链网络上实现智能合约.Solidity语言深受c++.Python和JavaScript的影响,针对以太坊(Ethereum)虚拟机( ...

  6. 区块链入门到实战(27)之以太坊(Ethereum) – 智能合约开发

    智能合约的优点 与传统合同相比,智能合约有一些显著优点: 不需要中间人 费用低 代码就是规则 区块链网络中有多个备份,不用担心丢失 避免人工错误 无需信任,就可履行协议 匿名履行协议 以太坊(Ethe ...

  7. 区块链入门到实战(22)之以太坊(Ethereum) – 账号(地址)

    作用: 外部账号 – 用户使用的账号,账户余额. 合约账号 – 智能合约使用的账号,每个智能合约都有一个账号,内存和账户余额 以太坊(Ethereum)网络中,有2种账号: 外部账号 – 用户使用的账 ...

  8. 区块链入门到实战(20)之以太坊(Ethereum) – 虚拟机(E.V.M.)

    作用:执行智能合约代码的引擎 以太坊(Ethereum)虚拟机是执行智能合约代码的引擎. 可以用某种语言,例如Solidity语言,开发智能合约程序,编译成以太坊(Ethereum)虚拟机支持的字节码 ...

  9. 区块链入门到实战(26)之以太坊(Ethereum) – 挖矿

    以太坊(Ethereum)与其他公共区块链一样,使用工作量证明机制确保区块链网络正常运行. 矿工进行工作量证明计算,即挖矿,来选择区块,写入区块链,确认交易. 交易过程如下图所示: 从技术角度来看,以 ...

随机推荐

  1. 如何阅读一本书——分析阅读Pre

    如何阅读一本书--分析阅读Pre 前情介绍 作者: 莫提默.艾德勒 查尔斯.范多伦 初版:1940年,一出版就是全美畅销书榜首一年多.钢铁侠Elon.Musk学过. 需要注意的句子: 成功的阅读牵涉到 ...

  2. Spring学习之AOP的实现方式

    Spring学习之AOP的三种实现方式 一.介绍AOP 在软件业,AOP为Aspect Oriented Programming的缩写,意为:面向切面编程,通过预编译方式和运行期间动态代理实现程序功能 ...

  3. Spring中使用MyBatis Generator

    简介 MyBatis Generator 是由MyBatis官方提供的MyBatis代码生成器.可以根据数据库表生成相关代码,比如POJO.Mapper接口.SQL Map xml等. 使用方式 MB ...

  4. python 变量的命名规则和注意事项

    命名规则 变量名只能包含字母.数字和下划线.变量名可以字母或下划线打头,但不能以数字打头,例如,可将变量命名为message_1,但不能将其命名为1_message 变量名不能包含空格,但可使用下划线 ...

  5. 强烈推荐的 IntelliJ IDEA 插件,别说我没告诉你

    为什么你的 Intellij IDEA 没别人的好用?还不是因为你缺少这几个插件啊! 善用 Intellij IDEA 插件可以提高我们的开发效率,今天和大家一起分享一下实际工作中常用的几款能提升幸福 ...

  6. Asp.Net Core 3.0的依赖注入改变

    Asp.Net Core 3.0出来很久了,预览版的时候就被我偶像Lemon大人,带着尝试摸索了一下这个 那么Asp.Net Core 3.0和Asp.Net Core 2.X到底有哪些区别呢? As ...

  7. 027_go语言中的通道选择器

    代码演示 package main import "fmt" import "time" func main() { c1 := make(chan strin ...

  8. Bytom DAPP 开发流程

    从目前已经发布的DAPP来看,DAPP架构大致可以分成3种类型:插件钱包模式.全节点钱包模式和兼容模式. 插件钱包模式是借助封装了钱包的浏览器插件通过RPC协议与区块链节点通信,插件在运行时会将Web ...

  9. 【Java】JavaMail 554错误解决方法

    一.解决连续发送多次 // 构件MimeMessage 对象,并设置在发送给收信人之前给自己(发送方)抄送一份 MimeMessage msg = mailSender.createMimeMessa ...

  10. C#LeetCode刷题之#671-二叉树中第二小的节点(Second Minimum Node In a Binary Tree)

    问题 该文章的最新版本已迁移至个人博客[比特飞],单击链接 https://www.byteflying.com/archives/4100 访问. 给定一个非空特殊的二叉树,每个节点都是正数,并且每 ...