差分进化算法介绍及matlab实现
引言
差分进化算法是基于群体智能理论的优化算法,是通过群体内个体间的合作与竞争而产生的智能优化搜索算法,它保留了基于种群的全局搜索策略,采用实数编码、基于差分的简单变异操作和“一对一”的竞争生存策略,降低了进化计算操作的复杂性。
差分进化算法的原理
差分进化算法是一种自组织最小化方法,利用种群中两个随机选择的不同向量来干扰现有向量,种群中的每一个向量都要进行干扰。
- 它通过把种群中的两个成员之间的加权差向量加到第三个成员上来产生新的参数向量,该操作成为“变异”。
- 将变异向量的参数与另外预先确定的目标向量参数按一定规则混合来产生实验向量,该操作成为“交叉”;
- 若实验向量的代价函数比目标向量的代价函数低,实验向量就在下一代中替代目标向量,该操作成为“选择”;
差分进化算法流程
具体步骤如下:
- 确定差分进化算法的控制参数和所要采用的具体策略。控制参数包括:种群数量、变异算子、交叉算子、最大进化代数、终止条件等。
- 随机产生初始种群,进化代数k=1;
- 对初始种群进行评价,即计算初始种群中每个个体的目标函数值。
- 判断是否达到终止条件或达到最大进化代数;若是,则进化终止,将此时的最佳个体作为解输出;否则,继续下一步操作。
- 进行变异操作和交叉操作,对边界条件进行处理,得到临时种群。
- 对临时种群进行评价,计算临时种群中每个个体的目标函数值。
- 对临时种群中的个体和原种群中对应的个体,进行“一对一”的选择操作,得到新种群。
- 进化代数k=k+1,转步骤(4).
实例:
$$计算函数的最小值,其中个体x的维数n=10.这是一个简单的平方和函数,只有一个极小点x=(0,0,...,0)。$$
%%%%%%%差分进化求函数极值%%%%%%%%%
%%%%%%%初始化%%%%%%%%
clear all;
close all;
clc;
NP = 50; %种群的数量
D = 10; %变量的维度
G = 200; %最大进化代数
F0 = 0.4; %初始变异算子
CR = 0.1; %交叉算子
Xs = 20; %上限
Xx = -20; %下限
yz = 10^-6; %阈值
%%%%%%%%赋初值%%%%%%%%%%%%
x = zeros(D,NP); %初始种群
v = zeros(D,NP); %变异种群
u = zeros(D,NP); %选择种群
x = rand(D,NP) * (Xs-Xx) + Xx; %赋初值
%%%%%%%%%%计算目标函数%%%%%%%%%%%
for m = 1:NP
Ob(m) = func1(x(:,m));
end
trace(1) = min(Ob);
%%%%%%%%%差分进化循环%%%%%%%%%%
for gen = 1:G
%%%%%%%%%%%变异操作%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%自适应变异算子%%%%%%%
lamda = exp(1-G/(G+1-gen));
F = F0*2^(lamda);
%%%%%%%%r1,r2,r3和m互不相同%%%%
for m = 1:NP
r1 = randi([1,NP],1,1);
while(r1 == m)
r1 = randi([1,NP],1,1);
end
r2 = randi([1,NP],1,1);
while (r2 == m) | (r2 == r1)
r2 = randi([1,NP],1,1);
end
r3 = randi([1,NP],1,1);
while (r3 == m) | (r3 == r1 | r3 == r2)
r3 = randi([1,NP],1,1);
end
v(:,m) = x(:,r1) + F * (x(:,r2) - x(:,r3));
end
%%%%%%%%%%%%%%%%%%交叉操作%%%%%%%%%%%%%%%%%
r = randi([1,NP],1,1); %确保必有一个v(:)进入u(:)中
for n = 1:D
cr = rand(1);
if (cr <= CR) | (n == r)
u(n,:) = v(n,:); %批量操作,替换所有个体第n维
else
u(n,:) = x(n,:);
end
end
%%%%%%%%%%%%%%%%边界条件的处理%%%%%%%%%%%%%%%
for n = 1:D
for m = 1:NP
if (u(n,m) < Xx) | (u(n,m) > Xs)
u(n,m) = rand * (Xs - Xx) + Xx;
end
end
end
%%%%%%%%%%%%%%%%选择操作%%%%%%%%%%%%%%%%%%%%
for m = 1:NP
Ob1(m) = func1(u(:,m));
end
for m = 1:NP
if Ob1(m) < Ob(m)
x(:,m) = u(:,m);
end
end
for m = 1:NP
Ob(m) = func1(x(:,m));
end
trace(gen+1) = min(Ob);
if min(Ob) < yz
break;
end
end
%%%%%%%%%%%%%%%%画图%%%%%%%%%%%%%%%
figure
plot(trace);
xlabel('迭代次数');
ylabel('目标函数值');
title('DE目标函数曲线');
%%%%%%%%%%%%%%适应度函数%%%%%%%%%%
function result = func1(x)
summ = sum(x.^2);
result = summ;
end
差分进化算法介绍及matlab实现的更多相关文章
- 标准差分进化算法matlab程序实现(转载)
标准差分进化算法matlab程序实现 自适应差分演化算法方面的Matlab和C++代码及论文 差分进化算法 DE-Differential Evolution matlab练习程序(差异演化DE) [ ...
- 差分进化算法 DE-Differential Evolution
差分进化算法 (Differential Evolution) Differential Evolution(DE)是由Storn等人于1995年提出的,和其它演化算法一样,DE是一种模拟生物进化 ...
- 差分进化算法(DE)的C++面向对象方法实现
代码来源于网络,写得非常棒 /*DE_test *对相应的Matlab程序进行测试 */ #include <iostream> #include <cmath> #inclu ...
- 差分进化算法-python实现
DEIndividual.py import numpy as np import ObjFunction class DEIndividual: ''' individual of differen ...
- Python遗传和进化算法框架(一)Geatpy快速入门
https://blog.csdn.net/qq_33353186/article/details/82014986 Geatpy是一个高性能的Python遗传算法库以及开放式进化算法框架,由华南理工 ...
- [Evolutionary Algorithm] 进化算法简介
进化算法,也被成为是演化算法(evolutionary algorithms,简称EAs),它不是一个具体的算法,而是一个“算法簇”.进化算法的产生的灵感借鉴了大自然中生物的进化操作,它一般包括基因编 ...
- 基于改进人工蜂群算法的K均值聚类算法(附MATLAB版源代码)
其实一直以来也没有准备在园子里发这样的文章,相对来说,算法改进放在园子里还是会稍稍显得格格不入.但是最近邮箱收到的几封邮件让我觉得有必要通过我的博客把过去做过的东西分享出去更给更多需要的人.从论文刊登 ...
- 蚁群算法和简要matlab来源
1 蚁群算法原理 从1991由意大利学者 M. Dorigo,V. Maniezzo 和 A. Colorni 通过模拟蚁群觅食行为提出了一种基于群体的模拟进化算法--蚁群优化.极大关注,蚁群算法的特 ...
- geatpy - 遗传和进化算法相关算子的库函数(python)
Geatpy The Genetic and Evolutionary Algorithm Toolbox for Python Introduction Website (including doc ...
随机推荐
- 面试官:如何写出让 CPU 跑得更快的代码?
前言 代码都是由 CPU 跑起来的,我们代码写的好与坏就决定了 CPU 的执行效率,特别是在编写计算密集型的程序,更要注重 CPU 的执行效率,否则将会大大影响系统性能. CPU 内部嵌入了 CPU ...
- 置Hugo的代码高亮
+++ date="2020-10-17" title="设置Hugo的代码高亮" tags=["hugo"] categories=[&q ...
- rabbitmq 延时队列
前言 某个产品 或者订单,有个有效期 过了有效期要取消 方法一 : 写个脚本,用crontab 定时扫描 改变状态 但是最低只能一分钟 ,不适合 方法二 : 用swoole得毫秒定时器,每秒钟去扫描表 ...
- css和xpath定位补充
定位的网页的地址:https://item.jd.com/100000323510.htmlxpath绝对定位: 1 以"/"开头的是绝对定位 2 /html/body/div[1 ...
- 解决加密PDF文档无法复制文字的问题
有的时候在网络上搜索到一篇心仪的PDF文档,想复制其中内容时提示无法复制. 如果只想摘抄其中部分文字内容,可以使用Firefox浏览器打开这篇加密文档. Firefox浏览器自带PDF插件,打开后即可 ...
- js堆排序
堆的预备知识 堆是一个完全二叉树. 完全二叉树: 二叉树除开最后一层,其他层结点数都达到最大,最后一层的所有结点都集中在左边(左边结点排列满的情况下,右边才能缺失结点). 大顶堆:根结点为最大值,每个 ...
- 分布式文件存储数据库 MongoDB
MongoDB 简介 Mongo 并非芒果(Mango)的意思,而是源于 Humongous(巨大的:庞大的)一词. MongoDB 是一个基于分布式文件存储的 NoSQL 数据库.由 C++ 语言编 ...
- 使用Volley获取验证码
时间紧张,直接上代码 public class MainActivity extends AppCompatActivity { private RequestQueue queues ; Strin ...
- .Net Core API 发布到IIS后,如何配置SSL详细步骤
一.首先,我们要将API发布到IIS,不脱机工作.但是这里会有问题,调用接口时,会返回 也就是说,我们需要配置SSL.接下来我们就来详细说明. 二.域名商提供SSL证书审核. 我的域名提供商是腾讯,直 ...
- SpringBoot+JPA+SpringSeurity+JWT
目的:使用这个框架主要就是为了解决高并发环境下登陆操作对数据库及服务器的压力,同时能保证安全性: 加载时,SpringSecurity定义拦截器和添加两个Fitler: 登陆时,登陆成功,通过传入的信 ...