1. 数组的创建

  2. 数组的访问

  3. 数组的合并

  4. 数组的分割

数组创建

>>> import numpy as np

创建一维数组
>>> x = np.arange(10)
>>> x
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) 创建二维数组
>>> X = np.arange(10).reshape(2, 5)
>>> X
array([[0, 1, 2, 3, 4],
[5, 6, 7, 8, 9]]) 查看数组为维度
>>> x.ndim
1
>>> X.ndim
2 查看数组的形状
>>> X.shape
(2, 5)

数组访问

>>> X
array([[0, 1, 2, 3, 4],
[5, 6, 7, 8, 9]]) >>> X[0]
array([0, 1, 2, 3, 4]) >>> X[1,1]
6 >>> X[0:4]
array([[0, 1, 2, 3, 4],
[5, 6, 7, 8, 9]]) >>> X[0:1]
array([[0, 1, 2, 3, 4]]) >>> X[0:2]
array([[0, 1, 2, 3, 4],
[5, 6, 7, 8, 9]]) >>> X[:2, :2]
array([[0, 1],
[5, 6]]) >>> X[:, 1]
array([1, 6]) >>> X[1, :]
array([5, 6, 7, 8, 9]) 创建子数组
>>> subX = X[:2, :2]
>>> subX
array([[0, 1],
[5, 6]]) 子数组修改
>>> subX[0, 0] = 100
>>> subX
array([[100, 1],
[ 5, 6]])
>>> X
array([[100, 1, 2, 3, 4],
[ 5, 6, 7, 8, 9]]) 如何使子数组的修改不影响原数组
>>> subX = X[:2, :2].copy()
>>> subX
array([[100, 1],
[ 5, 6]])
>>> subX[0, 1] = 200
>>> subX
array([[100, 200],
[ 5, 6]])
>>> X
array([[100, 1, 2, 3, 4],
[ 5, 6, 7, 8, 9]])

数组形状

>>> x
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> x.reshape(2, 5)
array([[0, 1, 2, 3, 4],
[5, 6, 7, 8, 9]])
>>> x.reshape(5, 2)
array([[0, 1],
[2, 3],
[4, 5],
[6, 7],
[8, 9]])
>>> A = x.reshape(5, 2)
>>> A
array([[0, 1],
[2, 3],
[4, 5],
[6, 7],
[8, 9]])
>>> x.reshape(10, -1)
array([[0],
[1],
[2],
[3],
[4],
[5],
[6],
[7],
[8],
[9]])
>>> x.reshape(-1, 10)
array([[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]])

数组合并

>>> a = np.array([1,2,3])
>>> b = np.array([4,5,6])
>>> a,b
(array([1, 2, 3]), array([4, 5, 6])) >>> np.concatenate([a,b])
array([1, 2, 3, 4, 5, 6]) >>> c = np.array([7,8,9])
>>> np.concatenate([a,b,c])
array([1, 2, 3, 4, 5, 6, 7, 8, 9]) >>> A = np.array([[1,2,3],[4,5,6]])
>>> np.concatenate([A, A])
array([[1, 2, 3],
[4, 5, 6],
[1, 2, 3],
[4, 5, 6]])
>>> np.concatenate([A, A], axis=0)
array([[1, 2, 3],
[4, 5, 6],
[1, 2, 3],
[4, 5, 6]])
>>> np.concatenate([A, A], axis=1)
array([[1, 2, 3, 1, 2, 3],
[4, 5, 6, 4, 5, 6]]) 不能合并两个维度不同的数组
>>> np.concatenate([A, a])
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<__array_function__ internals>", line 5, in concatenate
ValueError: all the input arrays must have same number of dimensions, but the array at index 0 has 2 dimension(s) and the array at index 1 has 1 dimension(s) 如何忽略维度问题
>>> np.concatenate([A, a.reshape(1, -1)])
array([[1, 2, 3],
[4, 5, 6],
[1, 2, 3]])
>>> A,a
(array([[1, 2, 3],
[4, 5, 6]]), array([1, 2, 3]))
>>> A.shape, a.shape
((2, 3), (3,))
>>> np.vstack([A, a])
array([[1, 2, 3],
[4, 5, 6],
[1, 2, 3]])
>>> a = np.array([[6],[6]])
>>> a
array([[6],
[6]])
>>> np.hstack([A, a])
array([[1, 2, 3, 6],
[4, 5, 6, 6]])

数组分割

>>> x
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> x1,x2,x3 = np.split(x, [3,7])
>>> x1,x2,x3
(array([0, 1, 2]), array([3, 4, 5, 6]), array([7, 8, 9]))
>>> A = np.arange(16).reshape(4,4)
>>> A
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11],
[12, 13, 14, 15]])
>>> A1,A2 = np.split(A, [2])
>>> A1,A2
(array([[0, 1, 2, 3],
[4, 5, 6, 7]]), array([[ 8, 9, 10, 11],
[12, 13, 14, 15]]))
>>> A1,A2 = np.split(A,[2],axis=1)
>>> A1,A2
(array([[ 0, 1],
[ 4, 5],
[ 8, 9],
[12, 13]]), array([[ 2, 3],
[ 6, 7],
[10, 11],
[14, 15]]))
>>> A1, A2 = np.vsplit(A, [2])
>>> A1,A2
(array([[0, 1, 2, 3],
[4, 5, 6, 7]]), array([[ 8, 9, 10, 11],
[12, 13, 14, 15]]))
>>> A1,A2 = np.hsplit(A,[2])
>>> A1,A2
(array([[ 0, 1],
[ 4, 5],
[ 8, 9],
[12, 13]]), array([[ 2, 3],
[ 6, 7],
[10, 11],
[14, 15]]))

01.Numpy数组的基本应用的更多相关文章

  1. numpy数组、向量、矩阵运算

    可以来我的Github看原文,欢迎交流. https://github.com/AsuraDong/Blog/blob/master/Articles/%E6%9C%BA%E5%99%A8%E5%AD ...

  2. 01. Numpy模块

    1.科学计算工具-Numpy基础数据结构 1.1.数组ndarray的属性 NumPy数组是一个多维数组对象,称为ndarray.其由两部分组成:① 实际的数据② 描述这些数据的元数据 注意数组格式, ...

  3. 21、numpy数组模块

    一.numpy简介 numpy官方文档:https://docs.scipy.org/doc/numpy/reference/?v=20190307135750 numpy是Python的一种开源的数 ...

  4. 数据分析01 /numpy模块

    数据分析01 /数据分析之numpy模块 目录 数据分析01 /数据分析之numpy模块 1. numpy简介 2. numpy的创建 3. numpy的方法 4. numpy的常用属性 5. num ...

  5. numpy数组的操作

    numpy - 介绍.基本数据类型.多维数组ndarray及其内建函数 http://blog.csdn.net/pipisorry/article/details/22107553 http://w ...

  6. Numpy数组对象的操作-索引机制、切片和迭代方法

    前几篇博文我写了数组创建和数据运算,现在我们就来看一下数组对象的操作方法.使用索引和切片的方法选择元素,还有如何数组的迭代方法. 一.索引机制 1.一维数组 In [1]: a = np.arange ...

  7. 操作 numpy 数组的常用函数

    操作 numpy 数组的常用函数 where 使用 where 函数能将索引掩码转换成索引位置: indices = where(mask) indices => (array([11, 12, ...

  8. NumPy 超详细教程(1):NumPy 数组

    系列文章地址 NumPy 最详细教程(1):NumPy 数组 NumPy 超详细教程(2):数据类型 NumPy 超详细教程(3):ndarray 的内部机理及高级迭代 文章目录 Numpy 数组:n ...

  9. NumPy数组对象

    1.创建NumPy数组 import numpy as np # 创建3*2*4的三维数组 a = np.arange(24).reshape(3, 2, 4) # 打印三维数组的所有元素 print ...

随机推荐

  1. MySql(二)索引的设计与使用

    MySql(二)索引的设计与使用 一.索引概述 二.设计索引的原则 三.BTREE索引与HASH索引 一.索引概述 所有Mysql列类型都可以被索引,对相关列使用索引时提高select操作性能的最佳途 ...

  2. Spark SQL 自定义函数类型

    Spark SQL 自定义函数类型 一.spark读取数据 二.自定义函数结构 三.附上长长的各种pom 一.spark读取数据 前段时间一直在研究GeoMesa下的Spark JTS,Spark J ...

  3. Pythonchallenge1过关攻略

    第一关上来是一个电视,上面写着2^38,这就非常关键了,这时候我们已经有了大致思路,再看一眼电视机下面的话确认一下,"Hint: try to change the URL address. ...

  4. WebApi Swagger 接口多版本控制 适用于APP接口管理

    最近研究了下swagger多版本的维护,网上的文章千篇一律,无法满足我的需求,分享下我的使用场景以及实现 演示环境:Visual Studio 2019.Asp.NET WebAPI.NET Fram ...

  5. 用鸿蒙开发AI应用(八)JS框架访问内核层

    目录:前言JS应用开发框架原理内置模块实现ace模块开发界面程序 前言上回说到,用C++来写UI界面的开发效率不如JS+HTML来的高,但设备开发又免不了要通过内核态来操作硬件,这里我们就要先打通从J ...

  6. Codeforces Round #635 (Div. 2)

    Contest Info Practice Link Solved A B C D E F 4/6 O O Ø  Ø     O 在比赛中通过 Ø 赛后通过 ! 尝试了但是失败了 - 没有尝试 Sol ...

  7. dsu on tree ——附带buff的暴力解法

    这篇博客只是简单叙述思想(因为ML太弱了),具体例题请转其他博客. dsu on tree,许多OI将其归于启发式合并,当然如果你能理解更好,这只是一个理解方式罢了. 思想简述 顾名思义,这个算法是处 ...

  8. Codeforces Round #656 (Div. 3) A. Three Pairwise Maximums (数学)

    题意:给你三个正整数\(x\),\(y\),\(z\),问能够找到三个正整数\(a\),\(b\),\(c\),使得\(x=max(a,b)\),\(y=max(a,c)\),\(z=max(b,c) ...

  9. Codeforces Round #515 (Div. 3) E. Binary Numbers AND Sum (二进制,前缀和)

    题意:有两个\(01\)字符串\(a\)和\(b\),每次让\(a\)和\(b\)进行与运算,将值贡献给答案,然后将\(b\)右移一位,直到\(b=0\). 题解:因为\(a\)不变,而\(b\)每次 ...

  10. C#Assembly、程序集、装配件、命名空间以及类型的关系

    Assembly = 程序集 = 装配件 命名空间是类的逻辑组织形式,程序集是类的物理组织形式. 程序集其实和命名空间没有什么必然的联系. 程序集1: namespace1{ public class ...