题目:

大概意思就是给你一个序列,你可以选择一段区间使它左右翻折一遍,然后呢,从1到n找一遍,看a[i]==i的数最多是多少。

其实刚才我已经把暴力思路说出来了,枚举每一个区间长度,枚举每一个左端点,再查询a[i]的值,时间复杂度O(n^3^)。

稍微优化一点,枚举每一个中点,左右扩展的同时查询,复杂度O(n^2^)(注意中点有可能不是点,可能是两个点中间,不考虑这个会被卡20分)

正解:

我们需要考虑下面两个性质:

性质1:对于一个点i,如果想让它满足条件,它的翻折区间是从i到a[i],在这个区间内满足a[k]+k==a[i]+i的点会在i翻折的同时也翻折到正确的位置,不满足的一定不会翻到正确的位置。

证明:显然,关于(a[i]+i)/2对称的点,一定满足(a[k]+k)/2==(a[i]+i)/2,只有满足这个条件k跟i才共用同一个中点,从而能一起翻折到正确的位置,不满足这个条件的一定翻不到正确的位置

我们对于所有的a[i]+i值,开一个向量存储所有的i。简而言之,就是开一个向量数组,把a[i]+i相同的元素都放到一个向量里面。

我们对于每一个向量,先根据翻折区间的大小,从小到大排序一遍,我们先处理小区间,再处理大区间(因为大区间会顺便把小区间的也翻折过去,会漏一些情况)。

对于每一个翻折区间,我们的结果是:

区间左侧的满足条件的i+区间右侧的满足条件的i+区间内翻折后满足条件的i(废话连篇)

对于区间左侧与右侧的满足条件的i,我们可一通过预处理(前缀和+后缀和)来做到O(1)查询,关键在怎么处理这个区间内的情况,这需要我们的下一个性质。

性质2:

一个区间内部的满足条件的i的数量与这个区间是满足a[i]+i相等的区间的正序排序位置相等(好复杂)

上面是我胡编的性质,我们处理这个性质需要结合刚才的vector来考虑。

对于一些a[i]+i相等的数们,我们把他们都放进了一个vector里面,然后都排序好了,然后这个i是排完序后的第几位,i~a[i]这个区间里面就有几个满足条件的数。

???是不是很神奇,竟然这么简单?下面是证明

对于相等a[i]+i的最小的区间,我们不妨设他为k~a[k],已知它是最小的满足a[k]+k=a[i]+i的区间,那在这个区间翻折后,也之可能有这一个k变成了满足条件的数。首先,我们知道,只有a[i]+i=a[k]+k的区间通过这个翻折才能变为满足i=a[i]的数,而k~a[k]的区间是等值的区间中最小的那个,所以在k~a[k]以内的数,只能不满足a[i]+i=a[k]+k,(满足的都比k~a[k]这个区间大)

所以,k~a[k]这个区间翻折之后也就只有一个满足条件的i就是k啦。

以此类推,第二大的区间内部也只有那个区间的两端和这个k满足条件,翻折后满足条件的i有2个。

第三大的区间里翻折后满足条件的有3个,第四大的有4个……

所以我们知道对于a[i]+i相等的区间,第几大的区间翻折后区间里面就有几个满足条件a[i]==i的数。

思路差不多了上代码:

#include<bits/stdc++.h>
using namespace std;
const int maxn=1e7+10;
int n,a[maxn],L[maxn],R[maxn];//L数组是从1到i的满足a[i]==i的数量,R数组是i到n的
vector<int> q[maxn];
int now;
bool cmp(int x,int y){
return abs(now-2*x)<abs(now-2*y);
//now是现在的a[i]+i的和,翻折区间的长度=abs(a[i]-i)=abs(ans-i-i);
}
int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++){
scanf("%d",&a[i]);
q[a[i]+i].push_back(i);//记住这里的向量里面保存下标
if(a[i]==i)L[i]=L[i-1]+1;
else L[i]=L[i-1];
}
for(int i=n;i>=1;i--){
if(a[i]==i)R[i]=R[i+1]+1;
else R[i]=R[i+1];
}
//以上是初始化操作
int ans=0;
for(int i=2;i<=2*n;i++){
now=i;
if(q[i].empty())continue;
sort(q[i].begin(),q[i].end(),cmp);
for(int j=0;j<q[i].size();j++){
int l=q[i][j],r=now-q[i][j];//当前区间的左右端点
if(l>r)swap(l,r);
ans=max(ans,L[l-1]+R[r+1]+j+1);
//因为j=0的时候是第一个区间,所以加的是j+1。
}
}
printf("%d",ans);
return 0;
}

旋转子段 (思维stl)的更多相关文章

  1. 8.7 NOIP模拟测试14 旋转子段+走格子+ 柱状图

    T1 旋转子段 30% 暴力枚举起点和长度,暴力判断,o(n3)  不知道为什么我拿了40分... 60% 每一个点都有一个固定的旋转中心可以转成固定点,枚举旋转点和长度. 100% 用一个vecto ...

  2. [CSP-S模拟测试]:旋转子段(数学)

    题目描述 $ZYL$有$N$张牌编号分别为$1,2,...,N$.他把这$N$张牌打乱排成一排,然后他要做一次旋转使得旋转后固定点尽可能多.如果第$i$个位置的牌的编号为$i$,我们就称之为固定点.旋 ...

  3. NOIP模拟测试14「旋转子段·走格子·柱状图」

    旋转子段 连60分都没想,考试一直肝t3,t2,没想到t1最简单 我一直以为t1很难,看了题解发现也就那样 题解 性质1 一个包含a[i]旋转区间值域范围最多为min(a[i],i)----max(a ...

  4. 883H - Palindromic Cut(思维+STL)

    题目链接:http://codeforces.com/problemset/problem/883/H 题目大意:给一段长度为n的字符串s,想让你把s切成几段长度相同的回文串,可以改变s中字符的排列, ...

  5. HZOJ 旋转子段

    作者的正解: 算法一:对于30%的数据: 直接枚举区间直接模拟,时间复杂度O(N3). 算法二:对于60%的数据:枚举旋转中心点,然后再枚举旋转的端点, 我们可以用O(n)的预处理求前缀和记录固定点, ...

  6. UVA1471-Defense Lines(思维+STL)

    Problem UVA1471-Defense Lines Accept: 297  Submit: 2776Time Limit: 9000 mSec Problem Description Aft ...

  7. CodeForces - 988D(思维STL)

    原文地址:https://blog.csdn.net/weixin_39453270/article/details/80548442 博主已经讲的很好了 题意: 从一个序列中,选出一个集合,使得集合 ...

  8. CSL 的字符串(思维+STL操作)

    链接:https://ac.nowcoder.com/acm/contest/551/D 来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 524288K,其他语言1048 ...

  9. 【JZOJ6288】旋转子段

    description analysis 可以先用前缀和把原串不调整的方案数先求出来 对于一种翻转,肯定是把\([i..a[i]]\)或\([a[i]..i]\)这段区间翻转 也可以看做是以\({i+ ...

随机推荐

  1. 登录SQL Server服务器时的服务器名称

    在本地访问Microsoft SQL Server 2008服务器时,首先就是要填写正确的服务器名称.经测试,该名称可以有多种写法,具体如下: 写法一: X\sqlexpress(X即计算机名) 写法 ...

  2. hexo博客front-matter格式

    通用格式 Front-matter 是文件最上方以 --- 分隔的区域,用于指定个别文件的变量,举例来说: --- title: Hello World date: 2013/7/13 20:46:2 ...

  3. C#托管堆和非托管堆

  4. Linux打包压缩解压工具

    第1章      Linux 打包压缩解压工具一.压缩.解压工具 compress/uncompress gzip/gunzip bzip2/bunzip2/ bzcat xz/unxz/ xzcat ...

  5. Vue企业级优雅实战04-组件开发01-SVG图标组件

    (后续的文章 公众号会提前一周更新,欢迎关注文末的微信公众号:程序员搞艺术) 预览本文的实现效果: # gitee git clone git@gitee.com:cloudyly/dscloudy- ...

  6. git个人常用命令

    git https://www.cnblogs.com/chenwolong/p/GIT.html 添加当前目录的所有文件到暂存区 $ git add . 提交暂存区到仓库区 $ git commit ...

  7. Java内部类使用场景和作用

    一.Java内部类的分类 Java内部类一般包括四种:成员内部类.局部内部类.匿名内部类和静态内部类 大多数业务需求,不使用内部类都可以解决,那为什么Java还要设计内部类呢. 二.内部类的使用场景 ...

  8. Jackson反序列化枚举类型解决方案

    BUG描述 在使用SpringBoot自带的jackson处理客户端提交的消息体反序列化时,遇到一个非常棘手的情况 客户端发送如下json {"content":"654 ...

  9. Redis学习(五)Redis知识点总结

    一.基础概念 Q:什么是 Redis? 定义:Redis 是完全开源免费基于内存亦可持久化的,遵守 BSD 协议,是一个高性能的 key-value 数据库. 特点: 数据的持久化 :可以将内存中的数 ...

  10. 论文阅读笔记: Natural Language Inference over Interaction Space

    这篇文章提出了DIIN(DENSELY INTERACTIVE INFERENCE NETWORK)模型. 是解决NLI(NATURAL LANGUAGE INFERENCE)问题的很好的一种方法. ...