P5530 [BOI 2002]双调路径
题意描述
题意描述的确实不是很清楚(出题人惜字如金)。
给定一张有 \(n\) 个点,\(m\) 条边的无向图,每条边有两个权值,分别表示经过这个点的代价和时间。
同时给出起点 \(s\) 和终点 \(t\),显然 \(s\to t\) 的路径有很多条。
其中说路径 A 比路径 B 更优,当且仅当 A 的代价和时间都小于 B。
当没有路线比这条路线更优时,称这条路线为最优路线。题目要求求 \(s\to t\) 的最优路线的条数。
注意:这里的最优路线可以有很多条,如果 \(time_A>time_B\) 但是 \(price_A<price_B\) 则两者谁也不优于谁。
同时,当两条路线代价和时间都相等时,成这两条路线为一条。(这里很良心了)
算法分析
基本思路
这里是双权值的最短路问题,比较直接的方法是以代价为关键字来枚举路径,每次选取时间最小的路径即可。
但是可以发现这种暴力算法将耗费大量时间用于判断代价是否相同,时间复杂度将非常恐怖,所以当场枪毙。
当时这种思想也给了我们启发,一番整理后有了一个可行的思想:
令 \(dis(i,j)\) 表示从 \(s\) 到 \(i\) 的代价为 \(j\) 的最短时间,那么显然有递推式:
\[dis(i,j)=min_{k\to i\in E}\{dis(k,j-price_{k,i})+time_{k,i}\}
\]统计答案时,我们一次遍历 \(dis(t,i)(0\leq i\leq 10000)\)。(其中 10000 为数据范围内的最大代价)
同时维护一个 \(mn\) 表示当前时间的最小值,当 \(dis(t,i)<mn\) 时,更新 \(mn\) 并且令
ans++
。这就表示:当一条路径的代价比你大(从小到大枚举)但时间比你少时,这是最优路径之一。
然后再时限放宽之后应该就是可以过了。(2020.4.22)
时间优化
但是在之前,这还是一道紫题的时候...,它的实现是 0.1s
,这么“滥用”最短路肯定是过不去的。
那怎么办呢?
可以发现,根据 OI 定理:当一个人比你小还比你强时,你就可以退役了。
换句话说:如果在你之前存在一条路径,代价和时间都比你小,那么你不可能是最优路径。
不仅如此,你所拓展的路径也不可能是最优路径。(自证不难)
所以我们可以利用树状数组进行优化,记录下区间最小值即可。(记得是二位树状数组)
代码实现
实现比较简单,说实话思路也没有难到哪里去。
#include<cstdio>
#include<cstring>
#include<iostream>
#include<cmath>
#include<queue>
#include<algorithm>
#define N 1100
#define M 3100
#define C 10010
using namespace std;
int n,m,s,t,head[N],cnt=0,dis[N][C],tree[N][C];
bool vis[N][C];
struct Edge{
int nxt,to,w1,w2;
}ed[M<<1];
int read(){
int x=0,f=1;char c=getchar();
while(c<'0' || c>'9') f=(c=='-')?-1:1,c=getchar();
while(c>='0' && c<='9') x=x*10+c-48,c=getchar();
return x*f;
}
void add(int u,int v,int c,int t){
ed[++cnt].nxt=head[u];
ed[cnt].to=v,ed[cnt].w1=c,ed[cnt].w2=t;
head[u]=cnt;
return;
}
int lowbit(int x){return x&(-x);}
void change(int x,int y,int z){
y++;
while(y<10100){
tree[x][y]=min(tree[x][y],z);
y+=lowbit(y);
}
return;
}
int ask(int x,int y){
y++;
int mn=0x7fffffff;
while(y>=1){
mn=min(mn,tree[x][y]);
y-=lowbit(y);
}
return mn;
}
void spfa(){
queue<pair<int,int> >q;
memset(dis,0x3f,sizeof(dis));
memset(tree,0x3f,sizeof(tree));
memset(vis,false,sizeof(vis));
dis[s][0]=0;
vis[s][0]=true;
q.push(make_pair(s,0));
change(s,0,0);
while(!q.empty()){
int w=q.front().second,u=q.front().first;
q.pop();
vis[u][w]=false;
for(int i=head[u];i;i=ed[i].nxt){
int v=ed[i].to;
int w1=ed[i].w1,w2=ed[i].w2;
int ww=w+w1;
if(ask(v,ww)>dis[u][w]+w2){
dis[v][ww]=dis[u][w]+w2;
change(v,ww,dis[v][ww]);
if(!vis[v][ww])
q.push(make_pair(v,ww)),vis[v][ww]=true;
}
}
}
return;
}
int main(){
n=read(),m=read(),s=read(),t=read();
int u,v,w1,w2;
for(int i=1;i<=m;i++){
u=read(),v=read(),w1=read(),w2=read();
add(u,v,w1,w2),add(v,u,w1,w2);
}
spfa();
int mmin = 0x3f3f3f3f, ans = 0;
for (int i = 0; i <= 10000; i++) {
if (dis[t][i] < mmin)
mmin = dis[t][i], ans++;
}
printf("%d\n",ans);
return 0;
}
完结撒花
P5530 [BOI 2002]双调路径的更多相关文章
- 题解 P5530 [BalticOI 2002]双调路径
P5530 [BalticOI 2002]双调路径 输入样例: 4 5 1 4 2 1 2 1 3 4 3 1 2 3 1 2 3 1 1 4 2 4 2 4 样例如下图 样例说明: 从1到4有4条路 ...
- Bicriterial routing 双调路径 HYSBZ - 1375(分层最短路)
Description 来越多,因此选择最佳路径是很现实的问题.城市的道路是双向的,每条道路有固定的旅行时间以及需要支付的费用.路径由连续的道路组成.总时间是各条道路旅行时间的和,总费用是各条道路所支 ...
- bzoj1375 双调路径
Description 来越多,因此选择最佳路径是很现实的问题.城市的道路是双向的,每条道路有固定的旅行时间以及需要支付的费用.路径由连续的道路组成.总时间是各条道路旅行时间的和,总费用是各条道路所支 ...
- [bzoj1375] [Baltic2002] Bicriterial routing 双调路径
Description 如今的道路收费发展很快.道路的密度越来越大,因此选择最佳路径是很现实的问题.城市的道路是双向的,每条道路有固定的旅行时间以及需要支付的费用. 路径是连续经过的道路组成的.总时间 ...
- bzoj AC倒序
Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...
- 8.2/baltic神(水)题
summary:10 bzoj1334: Description N个政党要组成一个联合内阁,每个党都有自己的席位数. 现在希望你找出一种方案,你选中的党的席位数要大于总数的一半,并且联合内阁的席位数 ...
- POJ 2677 Tour
题意:双调欧几里得旅行商问题.算法导论15-1题,从最左边的点严格从左走到右再从右走到左回到起点,所有点都要走且只走一次,求最短路径. 解法:定义dp[i][j]表示从i走到j的双调路径,分为两种情况 ...
- loj题目总览
--DavidJing提供技术支持 现将今年7月份之前必须刷完的题目列举 完成度[23/34] [178/250] 第 1 章 贪心算法 √ [11/11] #10000 「一本通 1.1 例 1」活 ...
- 【正睿oi省选十连测】第一场
四小时写了两个暴力??自闭 [原来这就是神仙们的分量Orz rank 56/75 可以说是无比垃圾了 下周目标:进步十名?[大雾 T1 题意:有n个点的图 点有点权Ai 也有点权Bi = A_1 + ...
随机推荐
- Pipelines
https://blog.csdn.net/buracag_mc/article/details/100155599 ML Pipelines提供了一组基于DataFrame构建的统一的高级API,可 ...
- win10下安装使用Docker:Docker for Windows
一.下载win10下安装docker和桌面管理的工具: 下载地址:Docker for Windows 安装软件学习地址:https://www.runoob.com/docker/docker-tu ...
- 2. 在TCGA中找到并下载意向数据
听说过别人用生信分析"空手套白狼"的故事吧想做吗好想学哦~ 或多或少都知道GEO和TCGA这些公共数据库吧!那么你知道怎么在数据库上找到意向数据,并且成功下载呢?这第一步要难倒一大 ...
- tensorflow Mobilenet 导出模型的方法
python export_inference_graph.py --input_type image_tensor --pipeline_config_path ssd_mobilenet_v1_c ...
- Linux系统安装JDK1.8
2020最新Linux系统发行版ContOS7演示安装JDK. 为防止操作权限不足,建议切换root用户,当然如果你对Linux命令熟悉,能够自主完成权限更新操作,可以不考虑此推荐. 更多命令学习推荐 ...
- 使用Spring Boot创建docker image
目录 简介 传统做法和它的缺点 使用Buildpacks Layered Jars 自定义Layer 简介 在很久很久以前,我们是怎么创建Spring Boot的docker image呢?最最通用的 ...
- AT一万亿港元市值之差,腾讯和阿里到底“差”在哪里?
很少有人注意到,港股之王已经悄然易主. 2019年底,阿里巴巴赴港二次上市,中国两大互联网巨头终于有了统一的比较口径,同台竞技之下,我们发现一个惊人事实--截止9月5日,港股阿里巴巴市值5.9万亿港元 ...
- Thumbnailator处理图片
读取源图 of(String... files) of(File... files) of(InputStream... inputStreams) of(URL... urls) 输出文件 toFi ...
- k8s-获取kuboardtoken
master节点执行命令 echo $(kubectl -n kube-system get secret $(kubectl -n kube-system get secret | grep kub ...
- go 数组指针 指针数组
package main import "fmt" func test() { var p *int // 定义指针 var a = 10 p = &a // 将a的地址赋 ...