小B写了一个程序,随机生成了n个正整数,分别是a[1]..a[n],他取出了其中一些数,并把它们乘起来之后模p,得到了余数c。但是没过多久,小B就忘记他选了哪些数,他想把所有可能的取数方案都找出来。你能帮他计算一下一共有多少种取数方案吗?请把最后的方案数模1000000007后输出。
小B记得他至少取了一个数。

输入格式:

第一行三个正整数n,p,c,含义如题目所述。
接下来一行有n个正整数,表示生成的n个随机数。

输出格式:

一个数,方案数模1000000007。

样例输入:

2 7 2
1 2 4

样例输出:

2

数据范围:

对于30%的数据,n≤16
另有30%的数据,p≤10000
对于100%的数据,n≤32, p≤10^9, c≤10^9, a[i]<p, p是质数

时间限制:

1 sec

空间限制:

128MB

折半搜索+逆元

因为n只有32的范围

所以考虑折半搜索,将前$\frac{n}{2}$和后$\frac{n}{2}$个元素的所有乘积处理出来

然后将这两组之间的元素进行匹配

对于一组中的乘积$a$,那么需要在另一组中找到$b$,满足$a*b \equiv c$

那么可以发现$b$为$a$的逆元$k$再乘上$c$,因为$p$是质数,那么$k$可以用费马小定理解决

即$b=a^{p-2}*c$,在$b$的数组中二分查找即可

还有这道题有个坑点

1.如果$c\geq p$答案即为0

#include <bits/stdc++.h>
#define mod 1000000007
#define ll long long
using namespace std;
ll n,p,c,a[1000],tot,ans;
vector <ll> s;
vector <pair<ll,ll> > t;
ll m_pow(ll a,ll b)//快速幂,求逆元
{
ll ans=1;
while (b)
{
if (b&1)
ans=(ans*a)%p;
b>>=1;
a=(a*a)%p;
}
return ans;
}
void dfs1(ll x,ll l,ll r,ll sum)//用dfs求出每一个乘积
{
if (x==r+1)
{
ll ne;
ne=(m_pow(sum,p-2)*c)%p;//将每一乘积需要的答案压入数组
s.push_back(ne);
return;
}
dfs1(x+1,l,r,sum);
dfs1(x+1,l,r,(sum*a[x])%p);
}
void dfs2(ll x,ll l,ll r,ll sum)
{
if (x==r+1)
{
vector <pair<ll,ll> > :: iterator it;
it=lower_bound(t.begin(),t.end(),make_pair(sum,(ll)0));//进行匹配
if ((*it).first==sum)
ans=(ans+(*it).second)%mod;
return;
}
dfs2(x+1,l,r,sum);
dfs2(x+1,l,r,(sum*a[x])%p);
}
int main()
{
scanf("%lld%lld%lld",&n,&p,&c);
for (ll i=1;i<=n;i++)
scanf("%lld",&a[i]);
if (c>=p)
{
printf("0\n");
return 0;
}
for (ll i=1;i<=n;i++)
a[i]%=p;
dfs1(1,1,n/2,1);
sort(s.begin(),s.end());
ll kind=s[0],w=1;
for (ll i=1;i<(ll)s.size();i++)
{
if (s[i]==kind)
w++;
else
{
t.push_back(make_pair(kind,w));
w=1;
kind=s[i];
}
}
t.push_back(make_pair(kind,w));
tot=0;
dfs2(n/2+1,n/2+1,n,1);
if (c==1)
ans=(ans-1)%mod;
printf("%lld\n",ans%mod);
}

XJOI 夏令营501-511测试11 统计方案的更多相关文章

  1. XJOI夏令营501训练1——分配工作

    传送门:QAQQAQ 题意:某公司有工作人员x1,x2,…,xn ,他们去做工作y1,y2,…,ym(n<=m) ,每个人都能做其中的几项工作,并且对每一项工作都有一个固定的效率.问能否找到一种 ...

  2. test20190725 夏令营测试11

    50+80+90=220.(每题满分90) 砍树 小A在一条水平的马路上种了n棵树,过了几年树都长得很高大了,每棵树都可以看作是一条长度为a[i]的竖线段.由于有的树过于高大,挡住了其他的树,使得另一 ...

  3. [XJOI]noip40 T2统计方案

    统计方案 小B写了一个程序,随机生成了n个正整数,分别是a[1]..a[n],他取出了其中一些数,并把它们乘起来之后模p,得到了余数c.但是没过多久,小B就忘记他选了哪些数,他想把所有可能的取数方案都 ...

  4. 【NOIP模拟赛】chess 建图+spfa统计方案数

    似乎弗洛伊德和迪杰斯特拉都干不了统计方案数,spfa的话就是不断入队就好. #include <cstdio> #include <cstring> #include < ...

  5. Android Activity启动耗时统计方案

    作者:林基宗 Activity的启动速度是很多开发者关心的问题,当页面跳转耗时过长时,App就会给人一种非常笨重的感觉.在遇到某个页面启动过慢的时候,开发的第一直觉一般是onCreate执行速度太慢了 ...

  6. Java实现统计方案

    统计方案 题目描述 在一无限大的二维平面中,我们做如下假设: 1.每次只能移动一格: 2.不能向后走(假设你的目的地是"向上",那么你可以向左走,可以向右走,也可以向上走,但是不可 ...

  7. XJOI 夏令营501-511测试11 游戏

    Alice和Bob两个人正在玩一个游戏,游戏有很多种任务,难度为p的任务(p是正整数),有1/(2^p)的概率完成并得到2^(p-1)分,如果完成不了,得0分.一开始每人都是0分,从Alice开始轮流 ...

  8. 论APP测试中黑盒测试方案的重要性?

    运筹帷幄之中,决胜千里之外.古人足不出户,通过正确的部署就能决定千里之外战争的胜利!而于测试人员而言,制定正确的测试方案,就是日后测试就是是否顺利的决定性因素. 在整个测试过程中,对测试人员.资源以及 ...

  9. C#技术分享【PDF转换成图片——11种方案】

    1.[iTextSharp.dll],C# 开源PDF处理工具,可以任意操作PDF,并可以提取PDF中的文字和图片,但不能直接将PDF转换成图片. DLL和源码 下载地址:http://downloa ...

随机推荐

  1. 090 01 Android 零基础入门 02 Java面向对象 02 Java封装 01 封装的实现 03 # 088 01 Android 零基础入门 02 Java面向对象 02 Java封装 01 封装的实现 04 使用包进行类管理(2)——导入包

    090 01 Android 零基础入门 02 Java面向对象 02 Java封装 01 封装的实现 03 # 088 01 Android 零基础入门 02 Java面向对象 02 Java封装 ...

  2. DoModal 函数的用法

    转载:https://blog.csdn.net/mpp_king/article/details/79707728                        https://www.cnblog ...

  3. Allegro PCB 转 PADS Layout

    操作系统:Windows 10 x64 工具1:Allegro PCB Design XL (legacy) version 16.6-2015 工具2:PADS Layout VX.2.3 参考1: ...

  4. 【题解】[SDOI2010]捉迷藏

    题目链接:https://www.luogu.com.cn/problem/P2479 题目大意:求平面\(n\)个点中,到其它\(n-1\)个点的曼哈顿距离最大和最小距离之差最小的点,求出这个这个距 ...

  5. Dotnet Core使用特定的SDK&Runtime版本

    Dotnet Core的SDK版本总在升级,怎么使用一个特定的版本呢?   假期过完了,心情还在.今天写个短的. 一.前言 写这个是因为昨天刷微软官方文档,发现global.json在 SDK 3.0 ...

  6. 实验五 Internet与网络工具的使用

    实验五 Internet与网络工具的使用 [实验目的]⑴.FTP服务器的架设和客户端的使用. ⑵.使用云盘和云笔记应用 ⑶.运用QQ的远程协助功能. (4).默认安装foxmail软件,进行邮件的收发 ...

  7. 多测师讲解python __for 循环___高级讲师肖sir

    横向输出 1.遍历字符串 2.遍历列表 3.遍历元组 方法一: 方法二: 方法三: #循环字典:方法一# dict1={"name":"zhihao",&quo ...

  8. 2019年CSP-J初赛试题(普及组)试题详解

    https://www.jianshu.com/p/9e58f455c1ee https://blog.csdn.net/weixin_39104847/article/details/1086711 ...

  9. es 迁移数据, 重建索引

    原索引 PUT my_index { "mappings": { "_doc": { "properties": { "creat ...

  10. Jmeter请求元件之参数化CSV

    1.设置CSV:线程组->配置元件->CSV 数据文件设置 2.在本地创建txt文件,一个测试用例参数是一行,参数之间用逗号分隔: 或者创建一个excel文档,保存格式为csv: 这里有个 ...