POJ-1860(最短路问题,Bellman-Ford算法判正圈)
Currency Exchange
POJ-1860
- 这题其实是最短路问题的变形,但是这里不用求解最短路,而是求解路径中是否存在正圈。如果存在正圈则说明兑换后的货币可以一直增加,否则不能实现通过货币转化来增加财富。
- 这和经典的使用Bellman-Ford判断是否存在负权也有不同的地方,这里需要在松弛方程中,改变判断的条件。
package POJ;
import java.util.*;
public class POJ_1860 {
static int n,m,s;
static double money;
static int edges;//边的数量
static class edge{
public int from,to;
public double rate,commisions;
edge(){}
edge(int from,int to,double rate,double commisions){
this.from=from;this.to=to;this.rate=rate;this.commisions=commisions;
}
};
static edge []es;
static double []d;
static boolean BellmanFord() {
d[s]=money;
for(int i=1;i<n;i++) {//下标从1开始
boolean flag=false;
for(int j=0;j<edges;j++) {
edge e=es[j];
if(d[e.to]<(d[e.from]-e.commisions)*e.rate) {
flag=true;
d[e.to]=(d[e.from]-e.commisions)*e.rate;
}
}
if(!flag)
return false;
}
for(int j=0;j<edges;j++) {
edge e=es[j];
if(d[e.to]<(d[e.from]-e.commisions)*e.rate) {
return true;
}
}
return false;
}
public static void main(String[] args) {
// TODO Auto-generated method stub
Scanner cin=new Scanner(System.in);
n=cin.nextInt();
m=cin.nextInt();
s=cin.nextInt();
money=cin.nextDouble();
es=new edge[2*m];
d=new double[n+1];
int j=0;
for(int i=0;i<m;i++) {
int from,to;
double r,m,r1,m1;
from=cin.nextInt();to=cin.nextInt();r=cin.nextDouble();m=cin.nextDouble();r1=cin.nextDouble();m1=cin.nextDouble();
es[j++]=new edge(from,to,r,m);
es[j++]=new edge(to,from,r1,m1);
}
edges=j;
if(BellmanFord())
System.out.println("YES");
else System.out.println("NO");
}
}
``
POJ-1860(最短路问题,Bellman-Ford算法判正圈)的更多相关文章
- Bellman—Ford算法思想
---恢复内容开始--- Bellman—Ford算法能在更普遍的情况下(存在负权边)解决单源点最短路径问题.对于给定的带权(有向或无向)图G=(V,E),其源点为s,加权函数w是边集E的映射.对图G ...
- Bellman - Ford 算法解决最短路径问题
Bellman - Ford 算法: 一:基本算法 对于单源最短路径问题,上一篇文章中介绍了 Dijkstra 算法,但是由于 Dijkstra 算法局限于解决非负权的最短路径问题,对于带负权的图就力 ...
- poj 1860 Currency Exchange (SPFA、正权回路 bellman-ford)
链接:poj 1860 题意:给定n中货币.以及它们之间的税率.A货币转化为B货币的公式为 B=(V-Cab)*Rab,当中V为A的货币量, 求货币S通过若干此转换,再转换为原本的货币时是否会添加 分 ...
- POJ-3259(最短路+Bellman-Ford算法判负圈)
Wormholes POJ-3259 这题是最短路问题中判断是否存在负圈的模板题. 判断负圈的一个关键就是理解:如果在图中不存在从s可达的负圈,最短路径不会经过一个顶点两次.while循环最多执行v- ...
- POJ 1860 Currency Exchange (bellman-ford判负环)
Currency Exchange 题目链接: http://acm.hust.edu.cn/vjudge/contest/122685#problem/E Description Several c ...
- Dijkstra算法与Bellman - Ford算法示例(源自网上大牛的博客)【图论】
题意:题目大意:有N个点,给出从a点到b点的距离,当然a和b是互相可以抵达的,问从1到n的最短距离 poj2387 Description Bessie is out in the field and ...
- POJ 1860 Currency Exchange【SPFA判环】
Several currency exchange points are working in our city. Let us suppose that each point specializes ...
- (简单) POJ 1860 Currency Exchange,SPFA判圈。
Description Several currency exchange points are working in our city. Let us suppose that each point ...
- poj1860 bellman—ford队列优化 Currency Exchange
Currency Exchange Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 22123 Accepted: 799 ...
随机推荐
- codeforces628D. Magic Numbers (数位dp)
Consider the decimal presentation of an integer. Let's call a number d-magic if digit d appears in d ...
- JavaScript_继承
- Codeforces Round #649 (Div. 2) A. XXXXX (贪心)
题意:有一个长度为\(n\)的数组,找一段最长子数组,使得其元素和为\(x\),如果存在,输出子数组的长度,否则输出\(-1\). 题解:这题我们要从元素和\(sum\)来考虑,首先,如果原数组的所有 ...
- Pdf和Office相关归集
Spire 支持Pdf.Office等的诸多操作,使用方便,需收费,免费版本仅支持10页以内的操作,在 这里 可以下载库. 优点 测试过打印效果佳,操作简便. 缺点 PDF打印慢,免费版本仅支持10页 ...
- 关于markdown的入门使用
关于标题 方式一: 使用 = - 标示一,二级标题 = 表示一级标题 - 表示二级标题 示例: 我展示的是一级标题 ================= 我展示的是二级标题 -------------- ...
- kafka——集群安裝部署(自带zookeeper)
kafka系列文章 第一章 linux单机安装kafka 第二章 kafka--集群安裝部署(自带zookeeper) 一.kafka简介 kafka官网:http://kafka.apache.or ...
- 2.使用jenkins自动构建并发布应用到k8s集群
作者 微信:tangy8080 电子邮箱:914661180@qq.com 更新时间:2019-06-21 14:39:01 星期五 欢迎您订阅和分享我的订阅号,订阅号内会不定期分享一些我自己学习过程 ...
- ThinkCMF框架任意内容包含漏洞分析复现(写入shell+文件包哈)
ThinkCMF框架任意内容包含漏洞分析复现 0x00 简介 ThinkCMF是一款基于PHP+MYSQL开发的中文内容管理框架,底层采用ThinkPHP3.2.3构建.ThinkCMF提出灵活的应用 ...
- Java开发工程师最新面试题库系列——Web部分(附答案)
WEB 如果你有更好的想法请在评论区留下您的答案,一起交流讨论 http和https有什么区别? 答:http是超文本传输协议,默认端口是80.https是安全的默认端口是443:http是明文传输, ...
- js 深入原理讲解系列-事件循环
js 深入原理讲解系列-事件循环 能看懂这一题你就掌握了 js 事件循环的核心原理 不要专业的术语,说人话,讲明白! Q: 输出下面 console.log 的正确的顺序? console.log(' ...