kafka partition(分区)与 group
kafka partition(分区)与 group
一、
1、原理图
2、原理描述
一个topic 可以配置几个partition,produce发送的消息分发到不同的partition中,consumer接受数据的时候是按照group来接受,kafka确保每个partition只能同一个group中的同一个consumer消费,如果想要重复消费,那么需要其他的组来消费。Zookeerper中保存这每个topic下的每个partition在每个group中消费的offset
新版kafka把这个offsert保存到了一个__consumer_offsert的topic下
这个__consumer_offsert 有50个分区,通过将group的id哈希值%50的值来确定要保存到那一个分区. 这样也是为了考虑到zookeeper不擅长大量读写的原因。
所以,如果要一个group用几个consumer来同时读取的话,需要多线程来读取,一个线程相当于一个consumer实例。当consumer的数量大于分区的数量的时候,有的consumer线程会读取不到数据。
假设一个topic test 被groupA消费了,现在启动另外一个新的groupB来消费test,默认test-groupB的offset不是0,而是没有新建立,除非当test有数据的时候,groupB会收到该数据,该条数据也是第一条数据,groupB的offset也是刚初始化的ofsert, 除非用显式的用–from-beginnging 来获取从0开始数据
3、查看topic-group的offsert
位置:zookeeper
路径:[zk: localhost:2181(CONNECTED) 3] ls /brokers/topics/__consumer_offsets/partitions
在zookeeper的topic中有一个特殊的topic __consumer_offserts
计算方法:(放入哪个partitions)
int hashCode = Math.abs("ttt".hashCode());
int partition = hashCode % 50;
先计算group的hashCode,再除以分区数(50),可以得到partition的值
使用命令查看: kafka-simple-consumer-shell.sh --topic __consumer_offsets --partition 11 --broker-list localhost:9092,localhost:9093,localhost:9094 --formatter "kafka.coordinator.GroupMetadataManager\$OffsetsMessageFormatter"
4.参数
auto.offset.reset:默认值为largest,代表最新的消息,smallest代表从最早的消息开始读取,当consumer刚开始创建的时候没有offset这种情况,如果设置了largest,则为当收到最新的一条消息的时候开始记录offsert,若设置为smalert,那么会从头开始读partition
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
|
import kafka.producer.Partitioner; import kafka.utils.VerifiableProperties; public class JasonPartitioner<T> implements Partitioner { public JasonPartitioner(VerifiableProperties verifiableProperties) {} @Override public int partition(Object key, int numPartitions) { try { int partitionNum = Integer.parseInt((String) key); return Math.abs(Integer.parseInt((String) key) % numPartitions); } catch (Exception e) { return Math.abs(key.hashCode() % numPartitions); } } } |
如果将上例中的类作为partition.class,并通过如下代码发送20条消息(key分别为0,1,2,3)至topic3(包含4个Partition)。
1
2
3
4
5
6
7
8
9
10
|
public void sendMessage() throws InterruptedException{ for ( int i = 1 ; i <= 5 ; i++){ List messageList = new ArrayList<KeyedMessage<String, String>>(); for ( int j = 0 ; j < 4 ; j++){ messageList.add( new KeyedMessage<String, String>( "topic2" , j+ "" , "The " + i + " message for key " + j)); } producer.send(messageList); } producer.close(); } |
则key相同的消息会被发送并存储到同一个partition里,而且key的序号正好和Partition序号相同。(Partition序号从0开始,本例中的key也从0开始)。下图所示是通过Java程序调用Consumer后打印出的消息列表。
4、consumer group (本节所有描述都是基于Consumer hight level API而非low level API)。
使用Consumer high level API时,同一Topic的一条消息只能被同一个Consumer Group内的一个Consumer消费,但多个Consumer Group可同时消费这一消息。
这是Kafka用来实现一个Topic消息的广播(发给所有的Consumer)和单播(发给某一个Consumer)的手段。一个Topic可以对应多个Consumer Group。如果需要实现广播,只要每个Consumer有一个独立的Group就可以了。要实现单播只要所有的Consumer在同一个Group里。用Consumer Group还可以将Consumer进行自由的分组而不需要多次发送消息到不同的Topic。
实际上,Kafka的设计理念之一就是同时提供离线处理和实时处理。根据这一特性,可以使用Storm这种实时流处理系统对消息进行实时在线处理,同时使用Hadoop这种批处理系统进行离线处理,还可以同时将数据实时备份到另一个数据中心,只需要保证这三个操作所使用的Consumer属于不同的Consumer Group即可。
下面这个例子更清晰地展示了Kafka Consumer Group的特性。首先创建一个Topic (名为topic1,包含3个Partition),然后创建一个属于group1的Consumer实例,并创建三个属于group2的Consumer实例,最后通过Producer向topic1发送key分别为1,2,3的消息。结果发现属于group1的Consumer收到了所有的这三条消息,同时group2中的3个Consumer分别收到了key为1,2,3的消息。
kafka partition(分区)与 group的更多相关文章
- sql server partition分区与group by 分组
例子:在一个StudentScore表中,有序号ID,班级ClassId,学生姓名Name,性别Sex,语文成绩ChineseScore,数学成绩MathScore,平均成绩AverageScore等 ...
- kafka partition(分区)与 group(转)
原文 https://www.cnblogs.com/liuwei6/p/6900686.html 一. 1.原理图 2.原理描述 一个topic 可以配置几个partition,produce发送 ...
- kafka之partition分区及副本replica升级
修改kafka的partition分区 bin/kafka-topics.sh --zookeeper datacollect-2:2181 --alter --partitions 3 --topi ...
- sqlserver中分区函数 partition by与 group by 区别 删除关键字段重复列
partition by关键字是分析性函数的一部分,它和聚合函数(如group by)不同的地方在于它能返回一个分组中的多条记录,而聚合函数一般只有一条反映统计值的记录, partition by ...
- Kafka消费组(consumer group)
一直以来都想写一点关于kafka consumer的东西,特别是关于新版consumer的中文资料很少.最近Kafka社区邮件组已经在讨论是否应该正式使用新版本consumer替换老版本,笔者也觉得时 ...
- kafka consumer 分区reblance算法
转载请注明原创地址 http://www.cnblogs.com/dongxiao-yang/p/6238029.html 最近需要详细研究下kafka reblance过程中分区计算的算法细节,网上 ...
- Kafka设计解析(十三)Kafka消费组(consumer group)
转载自 huxihx,原文链接 Kafka消费组(consumer group) 一直以来都想写一点关于kafka consumer的东西,特别是关于新版consumer的中文资料很少.最近Kafka ...
- kafka的分区分配策略
用过 Kafka 的同学应该都知道,每个 Topic 一般会有很多个 partitions.为了使得我们能够及时消费消息,我们也可能会启动多个 Consumer 去消费,而每个 Consumer 又会 ...
- Kakfa揭秘 Day4 Kafka中分区深度解析
Kakfa揭秘 Day4 Kafka中分区深度解析 今天主要谈Kafka中的分区数和consumer中的并行度.从使用Kafka的角度说,这些都是至关重要的. 分区原则 Partition代表一个to ...
随机推荐
- 什么是基于风险的测试(RBT)?
基于风险的测试(Risk-based testing) 文/杨学明 一.基于风险的测试起源 基于风险的测试起源,在软件测试领域,基于风险测试最早的是测试大师Boris Beizer<软件测试技术 ...
- vue(1)——node.js安装使用,利用npm安装vue
node node简介 node.js也是用js开发的语言,而且是一门服务端语言,更有大神利用node写了一个操作系统出来——NodeOS node能干什么 自带下载工具: 对于我们开发前端项目,no ...
- maven常用仓库
==================2014-04-19添加========可访问=============================== http://nexus.openkoala.org/ ...
- django 创建admin用户名跟密码
一.django中创建用户名和密码 (venv) D:\project\py37project\Djangopro\Procrm>Python37 manage.py createsuperus ...
- MongoDB的搭建并配置主从以及读写分离
1.环境准备 1.Centos7 2.mongodb3.4.93.三台机器IP分别是:10.170.1.16.10.170.1.18.10.170.1.33 2.mongdb数据库的安装 如下操作是 ...
- Python开发【内置模块篇】configparser
生成配置文件 import configparser config = configparser.ConfigParser() config[', 'Compression': 'yes', ', ' ...
- [LeetCode] 3. 无重复字符的最长子串
题目链接:(https://leetcode-cn.com/problems/longest-substring-without-repeating-characters/) 题目描述: 给定一个字符 ...
- centos查看系统信息命令
1.cd - :返回上次所在的目录 2.查看系统版本 cat /etc/redhat-release 3.查看linux内核版本1)cat /proc/version 2) uname -a3) un ...
- Filebeat配置参考手册
Filebeat的配置参考 指定要运行的模块 前提: 在运行Filebeat模块之前,需要安装并配置Elastic堆栈: 安装Ingest Node GeoIP和User Agent插件.这些插件需要 ...
- linux安装OpenCV以及windows安装numpy、cv2等python2.7模块
OpenCV(Open Source Computer Vision Library) 是一个基于BSD许可(开源)发行的跨平台计算机视觉库,它具有C ++,C,Python和Java接口,可以运行在 ...