https://www.cnblogs.com/AwD-/p/6600650.html

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define P 1000000007
#define N 1024
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;}
int gcd(int n,int m){return m==0?n:gcd(m,n%m);}
int read()
{
int x=0,f=1;char c=getchar();
while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();}
while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
return x*f;
}
int n,a[N],f[2][N][N];
void inc(int &x,int y){x+=y;if (x>=P) x-=P;}
int main()
{
#ifndef ONLINE_JUDGE
freopen("a.in","r",stdin);
freopen("a.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read();
for (int i=1;i<=n;i++) a[i]=read();
f[0][1023][1023]=1;
for (int i=0;i<n;i++)
{
for (int j=0;j<N;j++)
for (int k=N-1^j;k>=0;k=k==0?-1:(k-1&(N-1^j)))
f[i&1^1][j][k|j]=f[i&1][j][k|j];
for (int j=0;j<N;j++)
for (int k=N-1^j;k>=0;k=k==0?-1:(k-1&(N-1^j)))
inc(f[i&1^1][j&a[i+1]][(k|j)&a[i+1]],f[i&1][j][k|j]),
inc(f[i&1^1][j&a[i+1]][((k|j)&a[i+1])|j],P-f[i&1][j][k|j]);
}
cout<<f[n&1][0][0]<<endl;
return 0;
}

  

BZOJ4762 最小集合(动态规划+容斥原理)的更多相关文章

  1. 1616 最小集合 51NOD(辗转相处求最大公约数+STL)

    1616 最小集合 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题  收藏  关注 A君有一个集合. 这个集合有个神奇的性质. 若X,Y属于该集合,那么X与Y的最大 ...

  2. UVA 11825 Hackers’ Crackdown(集合动态规划 子集枚举)

    Hackers’ Crackdown Miracle Corporations has a number of system services running in a distributed com ...

  3. bzoj 2839 : 集合计数 容斥原理

    因为要在n个里面选k个,所以我们先枚举选的是哪$k$个,方案数为$C_{n}^k$ 确定选哪k个之后就需要算出集合交集正为好这$k$个的方案数,考虑用容斥原理. 我们还剩下$n-k$个元素,交集至少为 ...

  4. 【BZOJ1471】不相交路径 题解(拓扑排序+动态规划+容斥原理)

    题目描述 在有向无环图上给你两个起点和终点分别为$a,b,c,d$.问有几种路径方案使得能从$a$走到$b$的同时能从$c$走到$d$,且两个路径没有交点. $1\leq n\leq 200,1\le ...

  5. 【51Nod 1616】【算法马拉松 19B】最小集合

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1616 这道题主要是查询一个数是不是原有集合的一个子集的所有数的gcd. ...

  6. 【BZOJ-2839】集合计数 容斥原理 + 线性推逆元 + 排列组合

    2839: 集合计数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 229  Solved: 120[Submit][Status][Discuss] ...

  7. 最小集合(51nod 1616)

    A君有一个集合. 这个集合有个神奇的性质. 若X,Y属于该集合,那么X与Y的最大公因数也属于该集合. 但是他忘了这个集合中原先有哪些数字. 不过幸运的是,他记起了其中n个数字. 当然,或许会因为过度紧 ...

  8. 九度OJ 1086 最小花费--动态规划

    题目地址:http://ac.jobdu.com/problem.php?pid=1086 题目描述: 在某条线路上有N个火车站,有三种距离的路程,L1,L2,L3,对应的价格为C1,C2,C3.其对 ...

  9. BZOJ 2839: 集合计数 [容斥原理 组合]

    2839: 集合计数 题意:n个元素的集合,选出若干子集使得交集大小为k,求方案数 先选出k个\(\binom{n}{k}\),剩下选出一些集合交集为空集 考虑容斥 \[ 交集为\emptyset = ...

随机推荐

  1. Dynamics 365 POA表记录的产生

    微软动态CRM专家罗勇 ,回复314或者20190311可方便获取本文,同时可以在第一间得到我发布的最新博文信息,follow me!我的网站是 www.luoyong.me . 前面的博文 Dyna ...

  2. ASP.NET Core 一步步搭建个人网站(1)_环境搭建

    ASP.NET Core2.0发布有一阵子了,这是.NET 开源跨平台的一个重大里程碑, 也意味着比1.0版本要更加成熟.目前.net core具有开源.跨平台.灵活部署.模块化架构等等特性,吸引着一 ...

  3. Centos7VMware虚拟机最小化安装后,安装Tenda U12 USB无线网卡驱动

    前几天买下了Tenda U12 USB 无线网卡 ,想连接上无线玩玩,可惜买下折腾了一周才解决他它驱动问题,前后在VMware上装了十多次,测试了好几个内核版本才搞定,好了废话不多说,分享下我安装过程 ...

  4. 使用jquery实现选项卡切换效果

    几张简陋的框架效果图 页面加载时: 选项卡操作后: css样式: <style type="text/css"> *{margin:0px;padding:0px;} ...

  5. deepin 15.8桌面系统

    深度桌面环境是深度科技自主开发的美观易用.极简操作的桌面环境,主要由桌面.启动器.任务栏.控制中心.窗口管理器等组成,系统中预装了 WPS Office.搜狗输入法.有道词典.网易云音乐以及深度特色应 ...

  6. python 3.7 配置mysql数据库

    一. mysql驱动安装 1.mysqlclient(推荐使用)    2.pymysql 二.django操作数据库     1.django配置连接数据库         settings.py ...

  7. LeetCode算法题-Convert BST to Greater Tree(Java实现)

    这是悦乐书的第255次更新,第268篇原创 01 看题和准备 今天介绍的是LeetCode算法题中Easy级别的第122题(顺位题号是538).给定二进制搜索树(BST),将其转换为更大树,使原始BS ...

  8. Linux删除隐藏文件

    方法2.ls -a 查询隐藏文件 将后缀名为.swp的文件删除 rm -f .nginx.conf.swp 再次编辑文件不在出现提示警告!

  9. JSP七大动作

  10. Zabbix 3.4.7调整监控阈值以及告警级别

    1.找到需要监控的主机:右上角进行搜索 我们要更改sepm02p的阈值和级别: 进行更改级别:先点击Triggers , 选中要更改的监控项,例如我要更改CPU,点击以下红色标出的,千万不要选择Tem ...