洛谷P1072 Hankson 的趣味题(题解)
https://www.luogu.org/problemnew/show/P1072(题目传送)
数学的推理在编程的体现越来越明显了。(本人嘀咕)
首先,我们知道这两个等式: (a0,x)=a1,[b0,x]=b1(a0,x)=a1,[b0,x]=b1
于是,我们可以设: x=a1*p,b1=x*tx=a1∗p,b1=x∗t
于是有: a1*p*t=b1a1∗p∗t=b1
所以我们令: b1/a1=sb1/a1=s
则: p*t=sp∗t=s
即: t=s/pt=s/p
又由最大公约数与最小公倍数的定义与性质可得:
(a0/a1,p)=1,(b1/b0,t)=1(a0/a1,p)=1,(b1/b0,t)=1
所以我们令: a0/a1=m,b1/b0=na0/a1=m,b1/b0=n
则有: (p,m)=1,(s/p,n)=1(p,m)=1,(s/p,n)=1
这就是第一个结论,我们称其为结论一。事实上,我们其实已经可以由结论一整理出可以AC的方法,即用sqrt(s)的复杂度枚举s的因数,然后将每个因数放到结论一中,看看是否成立,再统计所有符合结论一的因数的个数,然后输出即可。这种算法的复杂度是:O(sqrt(s)*log(s)*n)。这样其实也能卡过数据,但是还是没有达到理论上的通过。所以我们还要继续优化。
我们考虑(s/p,n)=1。如果s/p与n有相同质因数,则无法使(s/p,n)=1成立。于是,为了使(s/p,n)=1成立,我们可以将s与n所有相同的质因数从s中去掉(不动s/p的原因是s/p是s的因变量,改变无意义),得到剩余的数l,若(s/p,n)=1成立,s/p就必须是l的约数。
我们继续考虑(p,m)=1。因为s/p是l的约数,那么p就一定可以表示为这样的形式:
p=(s/l)*r(因为s/p*r=p,r属于N*)
即:p一定是s/l的倍数(因为s/p是l的约数),r也是l的约数。于是就又有:
r|l,且(r,m)=1
这就是第二个结论,我们称其为结论二。而解决结论二的方法便很明显了。我们可以用与解决结论一相似的方法,将l与m所有相同的质因数从l中去掉,得到剩余的数q。那么所有使结论二成立的r都是q的因数了。然后,我们可以用sqrt(q)的复杂度枚举q的所有因数,输出q的因数个数就行了。这样,复杂度便降到了:O((sqrt(s)+log(s))*n),从理论来说也不会超时了。
还有一点需要注意,那就是特判没有符合要求的x的情况。这种情况出现只有四种可能:
1、s不为整数
2、m不为整数
3、n不为整数
4、(s/l,m)≠1,即因为p是s/l的倍数,所以无论r取何值,都会有(p,m)≠1
加上这四个特判,这道题便做完了。(来个总结公式:结论成立=筛去必要条件的不足+必要条件,这也算是一种思路吧)
AC代码:
#include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<string>
using namespace std;
int ssqrt;
int cf(int a,int b)//去掉a中与b共有的质因数。思想:将b质因数分解,同时将a中与b共有的质因数去掉。
{
ssqrt=sqrt(b);
for(int i=;i<=ssqrt;i++)//sqrt(b)复杂度质因数分解b
{
if(b%i==)while(a%i==)a/=i;//去掉a中与b共有的质因数,将a分解
while(b%i==)b/=i;//将b质因数分解
}
if(b!=)while(a%b==)a/=b;//注意:此时b可能还不是1,因为b可能有比sqrt(b)更大的质因数,但至多只有一个,且它的次幂至多是1。所以如果b不是1,那就只能是一个质数。于是此时继续分解a。
return a;//返回剩下的a
}
int gcd(int a,int b){return b==?a:gcd(b,a%b);}//辗转相除求最大公约数
int main()
{
int a0,a1,b0,b1;
int gs;
int m,n,s,l,q;
scanf("%d",&gs);
int cnt;
while(gs--)
{
scanf("%d%d%d%d",&a0,&a1,&b0,&b1);
if(a0%a1|b1%b0|b1%a1){printf("0\n");continue;}//如果m、n、s中有小数,则直接输出0。这里的代码用到了一些位运算
m=a0/a1,n=b1/b0,s=b1/a1;l=cf(s,n);//求出m、n、s,然后求出l
if(gcd(max(s/l,m),min(s/l,m))!=){printf("0\n");continue;}//如果不互质,则直接输出0
q=cf(l,m);cnt=,ssqrt=sqrt(q);//求出q,开始枚举q的因数,求出q的因数个数
for(int i=;i<=ssqrt;i++)if(q%i==)cnt+=i==q/i?:;//这里注意,如果i==q/i,则只加1,否则加2
printf("%d\n",cnt);//输出
}
return ;
另附应用结论一的代码(好像更快。。。估计上面代码cf函数拖时间了吧):
#include<cstdio>
using namespace std;
int gcd(int a,int b) {
return b==?a:gcd(b,a%b);
}
int main() {
int T;
scanf("%d",&T);
while(T--) {
int a0,a1,b0,b1;
scanf("%d%d%d%d",&a0,&a1,&b0,&b1);
int p=a0/a1,q=b1/b0,ans=;
for(int x=1;x*x<=b1;x++) //精华
if(b1%x==){
if(x%a1==&&gcd(x/a1,p)==&&gcd(q,b1/x)==) ans++;
int y=b1/x;//得到另一个因子
if(x==y) continue;
if(y%a1==&&gcd(y/a1,p)==&&gcd(q,b1/y)==) ans++;
}
printf("%d\n",ans);
}
return ;
}
做题在纸上推理推理写写思路,更清晰地解题
给看到这里的OIer一个小干货吧(虽然很可能知道,但也是试了好久才总结出来的啊):cmd的窗口默认保存297行,宽80字符,高25字符
洛谷P1072 Hankson 的趣味题(题解)的更多相关文章
- 洛谷 P1072 Hankson 的趣味题 题解
题面 提前知识:gcd(a/d,b/d)*d=gcd(a,b); lcm(a,b)=a*b/gcd(a,b); 那么可以比较轻松的算出:gcd(x/a1,a0/a1)==gcd(b1/b0,b1/x) ...
- 洛谷 P1072 Hankson 的趣味题 解题报告
P1072 \(Hankson\)的趣味题 题目大意:已知有\(n\)组\(a0,a1,b0,b1\),求满足\((x,a0)=a1\),\([x,b0]=b1\)的\(x\)的个数. 数据范围:\( ...
- 洛谷P1072 Hankson 的趣味题
P1072 Hankson 的趣味题 题目描述 Hanks 博士是 BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫 Hankson.现在,刚刚放学回家的 Hankson 正在思考一 ...
- Java实现洛谷 P1072 Hankson 的趣味题
P1072 Hankson 的趣味题 输入输出样例 输入 2 41 1 96 288 95 1 37 1776 输出 6 2 PS: 通过辗转相除法的推导 import java.util.*; cl ...
- 【题解】洛谷P1072 Hankson的趣味题 (gcd和lcm的应用)
洛谷P1072:https://www.luogu.org/problemnew/show/P1072 思路 gcd(x,a0)=a1 lcm(x,b0)=b1→b0*x=b1*gcd(x,b0) ( ...
- 洛谷 P1072 Hankson 的趣味题
题目描述 Hanks 博士是 BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫 Hankson.现 在,刚刚放学回家的 Hankson 正在思考一个有趣的问题. 今天在课堂上,老师讲 ...
- [NOIP2009] 提高组 洛谷P1072 Hankson 的趣味题
题目描述 Hanks 博士是 BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫 Hankson.现 在,刚刚放学回家的 Hankson 正在思考一个有趣的问题. 今天在课堂上,老师讲 ...
- 洛谷P1072 Hankson的趣味题
这是个NOIP原题... 题意: 给定 a b c d 求 gcd(a, x) = b && lcm(c, x) = d 的x的个数. 可以发现一个朴素算法是从b到d枚举,期望得分50 ...
- 洛谷 - P1072 Hankson - 的趣味题 - 质因数分解
https://www.luogu.org/problemnew/show/P1072 一开始看了一看居然还想放弃了的. 把 \(x,a_0,a_1,b_0,b_1\) 质因数分解. 例如 \(x=p ...
随机推荐
- C++ 浅拷贝与深拷贝探究
C++浅拷贝与深拷贝探究 浅拷贝与深拷贝的概念是在类的复制/拷贝构造函数中出现的. 拷贝构造函数使用场景 对象作为参数,以值传递方式传入函数(要调用拷贝构造函数将实参拷贝给函数栈中的形参) 对象作为返 ...
- 版本控制工具(SVN/Git)介绍
文章大纲 一.SVN介绍二.Git介绍三.IDEA使用SVN和Git四.总结五.参考文章 一.SVN介绍 1. SVN服务器搭建和使用 首先来下载和搭建SVN服务器,下载地址如下: http:// ...
- C#基础学习第一天
..net与C# .NET是一个框架.一种平台.一种技术 C#是一种编程语言,可以开发基于.NET平台的应用 .NET能干什么 Winform ASP.NET Wwb wphone Unity3D游戏 ...
- phoenix API服务发布
概述 Elixir 的 Phoenix 框架对于开发 Web 应用非常方便,不仅有 RoR 的便利,还有 Erlang 的性能和高并发优势. 但是应用的发布涉及到 Erlang 和 Elixir 环境 ...
- 5.机器学习——DBSCAN聚类算法
1.优缺点 优点: (1)聚类速度快且能够有效处理噪声点和发现任意形状的空间聚类: (2)与K-MEANS比较起来,不需要输入要划分的聚类个数: (3)聚类簇的形状没有偏倚: (4)可以在需要时输入过 ...
- Linux Collection:用户管理
adduser 添加(新建)用户账户 $ sudo adduser username groups 添加组 $ groups username # 查看用户已有的组 $ groups username ...
- 事务的ACID属性,图解并发事务带来问题以及事务的隔离级别
事务的概述 事务是指作为单个逻辑工作单元执行的一系列操作,要么完全地执行,要么完全地不执行. 事务处理可以确保除非事务性单元内的所有操作都成功完成,否则不会永久更新面向数据的资源.通过将一组相关操作组 ...
- 【Linux基础】查看硬件信息-CPU
1.物理CPU数:计算机上实际配置的CPU个数. //查看计算机物理CPU个数(必须先sort后uniq) cat /proc/cpuinfo | grep "physical id&quo ...
- 文本分类实战(五)—— Bi-LSTM + Attention模型
1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类.总共有以下系列: word2vec预训练词向量 te ...
- (六)List All Indices
Now let’s take a peek at our indices: 现在让我们来看看我们的指数: GET /_cat/indices?v And the response: health st ...