numpy

Numpy介绍

编辑

一个用python实现的科学计算,包括:1、一个强大的N维数组对象Array;2、比较成熟的(广播)函数库;3、用于整合C/C++和Fortran代码的工具包;4、实用的线性代数、傅里叶变换和随机数生成函数。numpy和稀疏矩阵运算包scipy配合使用更加方便。
NumPy(Numeric Python)提供了许多高级的数值编程工具,如:矩阵数据类型、矢量处理,以及精密的运算库。

数据类型ndarray

编辑

NumPy provides an N-dimensional array type, the ndarray, which describes a collection of “items” of the same type.
NumPy提供了一个N维数组类型ndarray,它描述了相同类型的“items”的集合。
ndarray到底跟原生python列表的区别:

从图中我们可以看出ndarray在存储数据的时候,数据与数据的地址都是连续的,这样就给使得批量操作数组元素时速度更快。
这是因为ndarray中的所有元素的类型都是相同的,而Python列表中的元素类型是任意的,所以ndarray在存储元素时内存可以连续,而python原生list就只能通过寻址方式找到下一个元素,这虽然也导致了在通用性能方面Numpy的ndarray不及Python原生list,但在科学计算中,Numpy的ndarray就可以省掉很多循环语句,代码使用方面比Python原生list简单的多。
numpy内置了并行运算功能,当系统有多个核心时,做某种计算时,numpy会自动做并行计算
Numpy底层使用C语言编写,内部解除了GIL(全局解释器锁),其对数组的操作速度不受Python解释器的限制,效率远高于纯Python代码。
ndarray的属性
  

生成数组的方法:

empty(shape[, dtype, order])
empty_like(a[, dtype, order, subok])
eye(N[, M, k, dtype, order])
identity(n[, dtype])
ones(shape[, dtype, order])
ones_like(a[, dtype, order, subok])
zeros(shape[, dtype, order])
zeros_like(a[, dtype, order, subok])
full(shape, fill_value[, dtype, order])
full_like(a, fill_value[, dtype, order, subok])

Matplotlib

编辑 讨论

Matplotlib 是一个 Python 的 2D绘图库,它以各种硬拷贝格式和跨平台的交互式环境生成出版质量级别的图形。
 
中文名
绘图库
外文名
Matplotlib
所属领域
计算机
作    用
绘图
元    素
x轴和y轴
Matplotlib 是一个 Python 的 2D绘图库,它以各种硬拷贝格式和跨平台的交互式环境生成出版质量级别的图形 [1]  。
通过 Matplotlib,开发者可以仅需要几行代码,便可以生成绘图,直方图,功率谱,条形图,错误图,散点图等。
Matplotlib基础知识
1.Matplotlib中的基本图表包括的元素
x轴和y轴
水平和垂直的轴线
x轴和y轴刻度
刻度标示坐标轴的分隔,包括最小刻度和最大刻度
x轴和y轴刻度标签
表示特定坐标轴的值
绘图区域
实际绘图的区域
2.hold属性
hold属性默认为True,允许在一幅图中绘制多个曲线;将hold属性修改为False,每一个plot都会覆盖前面的plot。
但是目前不推荐去动hold这个属性,这种做法(会有警告)。因此使用默认设置即可。
3.网格线
grid方法
使用grid方法为图添加网格线
设置grid参数(参数与plot函数相同)
.lw代表linewidth,线的粗细
.alpha表示线的明暗程度
4.axis方法
如果axis方法没有任何参数,则返回当前坐标轴的上下限
5.xlim方法和ylim方法
除了plt.axis方法,还可以通过xlim,ylim方法设置坐标轴范围
6.legend方法
两种传参方法:
【推荐使用】在plot函数中增加label参数
在legend方法中传入字符串列表
配置matplotlib参数
永久配置
matplotlib配置信息是从配置文件读取的。在配置文件中可以为matplotlib的几乎所有属性指定永久有效的默认值
安装级配置文件(Per installation configuration file)
Python的site-packages目录下(site-packages/matplotlib/mpl-data/matplotlibrc)
系统级配置,每次重新安装matplotlib后,配置文件会被覆盖
如果希望保持持久有效的配置,最好选择在用户级配置文件中进行设置
对本配置文件的最佳应用方式,是将其作为默认配置模板
用户级.matplotlib/matplotlibrc文件(Per user .matplotlib/matplotlibrc)
用户的Documents and Settings目录
可以用matplotlib.get_configdir()命令来找到当前用户的配置文件目录
当前工作目录
代码运行的目录
在当前目录下,可以为目录所包含的当前项目代码定制matplotlib配置项。配置文件的文件名是matplotlibrc
在Windows系统中,没有全局配置文件,用户配置文件的位置在C:\Documents and Settings\yourname\.matplotlib。
在Linux系统中,全局配置文件的位置在/etc/matplotlibrc,用户配置文件的位置在$HOME/.matplotlib/matplotlibrc。
动态配置
程序中配置代码
To finetune settings only for that execution; this overwrites every configuration file.
配置方法的优先级为:
Matplotlib functions in Python code
matplotlibrc file in the current directory
User matplotlibrc file
Global matplotlibrc file
rcParams方法
通过rcParams字典访问并修改所有已经加载的配置项
简单的运用:
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
matplotlib.rcParams['font.family']='SimHei'
matplotlib.rcParams['font.sans-serif']=['SimHei']
labels=np.array(['第一次作业','第二次作业','第三次作业','第四次作业','第五次作业','第六次作业','第七次作业'])
nAttr=7
data=np.array([0,0.909,1,1,1,0.875,0])
angles=np.linspace(0,2*np.pi,nAttr,endpoint=False)
data=np.concatenate((data,[data[0]]))
angles=np.concatenate((angles,[angles[0]]))
fig=plt.figure(facecolor='white')
plt.subplot(111,polar=True)
plt.plot(angles,data,'bo-',color='g',linewidth=2)
plt.fill(angles,data,facecolor='r',alpha=0.25)
plt.thetagrids(angles*180/np.pi,labels)
plt.figtext(0.52,0.95,'01我的成绩',ha='center')
plt.grid(True)
plt.savefig('xuexi.JPG')
plt.show()

结果图:

 手绘风格:
from PIL import Image
import numpy as np
im0=np.array(Image.open('D:\\故宫.jpg').convert("L"))
im1=255-im0
im2=(100/255)*im0+150
im3=255*(im1/255)**2
pil_im=Image.fromarray(np.uint(im1))
pil_im.save('gugonggai.jpg')
pil_im.show()

im1,im2,im3三次改变的图分别为:

将im3改为:im3=255-255*(im1/255)**0.5+150

效果图为:

from PIL import Image
import numpy as np
vec_el=np.pi/2.2
vec_az=np.pi/4.
depth=7. #颜色的深浅,建议不要写太大的值,因为会变得很丑
im=np.array(Image.open('D:\\故宫.jpg').convert("L"))
a=np.asanyarray(im).astype('float')
grad=np.gradient(a)
grad_x,grad_y=grad
grad_x=grad_x*depth/100.
grad_y=grad_y*depth/100.
dx=np.cos(vec_el)*np.cos(vec_az)
dy=np.cos(vec_el)*np.cos(vec_az)
dz=np.sin(vec_el)
A=np.sqrt(grad_x**2+grad_y**2+1.)
uni_x=grad_x/A
uni_y=grad_y/A
uni_z=1./A
a2=255*(dx*uni_x+dy*uni_y+dz*uni_z)
a2=a2.clip(0,255)
im2=Image.fromarray(a2.astype('uint8'))
im2.save('gugong3.jpg')

好了,在这里放一下原图:

科学坐标绘制

import numpy as np
import matplotlib.pyplot as plt
import matplotlib
matplotlib.rcParams['font.family']='SimHei'
matplotlib.rcParams['font.sans-serif']=['SimHei']
def Draw(pcolor,nt_point,nt_text,nt_size):
plt.plot(x,y,'k',label="$exp_decay$",color=pcolor,\
linewidth=3,linestyle="-")
plt.plot(x,z,"b--",label="$cos(x^2)$",linewidth=1)
plt.xlabel('时间(s)')
plt.ylabel('幅度(mV)')
plt.title("阻尼衰减曲线绘制")
plt.annotate('$cos(2\pi t)\exp(-t)$',xy=nt_point,\
xytext=nt_text,fontsize=nt_size,arrowprops=\
dict(arrowstyle='->',connectionstyle="arc3,rad=.1"))
def Shadow(a, b):
ix=(x>a)&(x<b)
plt.fill_between(x,y,0,where=ix,facecolor='grey',alpha=0.25)
plt.text(0.5*(a+b),0.2,r"$\int_a^b f(x)\mathrm{d}x$",\
horizontalalignment='center')
def XY_Axis(x_start,x_end,y_start,y_end):
plt.xlim(x_start,x_end)
plt.ylim(y_start,y_end)
plt.xticks([np.pi/3,2*np.pi/3,1*np.pi,4*np.pi/3,\
5*np.pi/3],['$\pi/3$','$2\pi/3$','$\pi$','$4\pi/3$','$5\pi/3$'])
x=np.linspace(0.0,6.0,100)
y=np.cos(2*np.pi*x)*np.exp(-x)+0.8
z=0.5*np.cos(x**2)+0.8
note_point,note_text,note_size=(1,np.cos(2*np.pi)*\
np.exp(-1)+0.8),(1,1.4),14
fig=plt.figure(figsize=(8,6),facecolor='white')
plt.subplot(111)
Draw("red",note_point,note_text,note_size)
XY_Axis(0,5,0,1.8)
Shadow(0.8, 3)
plt.legend()
plt.savefig('sample.jpg')
plt.show()

结果图为:

numpy和matploptlib的更多相关文章

  1. 利用Python进行数据分析(5) NumPy基础: ndarray索引和切片

    概念理解 索引即通过一个无符号整数值获取数组里的值. 切片即对数组里某个片段的描述. 一维数组 一维数组的索引 一维数组的索引和Python列表的功能类似: 一维数组的切片 一维数组的切片语法格式为a ...

  2. 利用Python进行数据分析(4) NumPy基础: ndarray简单介绍

    一.NumPy 是什么 NumPy 是 Python 科学计算的基础包,它专为进行严格的数字处理而产生.在之前的随笔里已有更加详细的介绍,这里不再赘述. 利用 Python 进行数据分析(一)简单介绍 ...

  3. 利用Python进行数据分析(6) NumPy基础: 矢量计算

    矢量化指的是用数组表达式代替循环来操作数组里的每个元素. NumPy提供的通用函数(既ufunc函数)是一种对ndarray中的数据进行元素级别运算的函数. 例如,square函数计算各元素的平方,r ...

  4. python安装numpy、scipy和matplotlib等whl包的方法

    最近装了python和PyCharm开发环境,但是在安装numpy和matplotlib等包时出现了问题,现总结一下在windows平台下的安装方法. 由于现在找不到了工具包新版本的exe文件,所以采 ...

  5. 深入理解numpy

    一.为啥需要numpy python虽然说注重优雅简洁,但它终究是需要考虑效率的.别说运行速度不是瓶颈,在科学计算中运行速度就是瓶颈. python的列表,跟java一样,其实只是一维列表.一维列表相 ...

  6. Python Numpy,Pandas基础笔记

    Numpy Numpy是python的一个库.支持维度数组与矩阵计算并提供大量的数学函数库. arr = np.array([[1.2,1.3,1.4],[1.5,1.6,1.7]])#创建ndarr ...

  7. broadcasting Theano vs. Numpy

    broadcasting Theano vs. Numpy broadcast mechanism allows a scalar may be added to a matrix, a vector ...

  8. python之numpy

    一.矩阵的拼接合并 列拼接:np.column_stack() >>> import numpy as np >>> a = np.arange(9).reshap ...

  9. win7系统下python安装numpy,matplotlib,scipy和scikit-learn

    1.安装numpy,matplotlib,scipy和scikit-learn win7系统下直接采用pip或者下载源文件进行安装numpy,matplotlib,scipy时会遇到各种问题,这是因为 ...

随机推荐

  1. ES6箭头函数Arrow Function

    果然,隔了很长时间都没有来博客园上逛了...... 前一段时间一直在忙我们参加的一个比赛,转眼已经好久没有来逛过博客园了,果然还是很难坚持的...... 今天总算还是想起来要过来冒个泡,强行刷一波存在 ...

  2. 微信小程序实际开发中学习

    三个概念 微信:就是一个聊天工具 微信公众号:企业或个人用于管理其粉丝/用户的应用(类似于APP) 微信小程序:不需要下载安装直接可以使用的软件/应用/APP 小程序与公众号的区别: 定位不同(小程序 ...

  3. php $_FILES错误说明 以及图片前端图片上传失败。

    我的另一个原文:https://blog.csdn.net/qq_36570464/article/details/80692241 今天被一个问题弄了好久, 先看代码: 前端: <form m ...

  4. Python帮助

    我们可以很容易的通过Python解释器获取帮助.如果想知道一个对象(object)更多的信息,那么可以调用help(object)!另外还有一些有用的方法,dir(object)会显示该对象的大部分相 ...

  5. 王者荣耀交流协会final发布-第3次scrum立会

    1.例会照片 成员高远博,冉华,王磊,王玉玲,任思佳,袁玥出席.拍照的是王磊同学,王超同学因参加比赛不在学校,不能出席. master:任思佳 2.时间跨度 2017年12月3日 18:00 — 18 ...

  6. Sql Server 默认值

    --1.取得数据库所有表的默认值: select t3.name as 表名,t1.name as 字段名,t2.text as 默认值 ,t4.name from syscolumns t1,sys ...

  7. 在CMD命令下安装nexus报错和启动的问题

    安装问题问题描述: 在控制台(cmd)下执行nexus install命令安装nexus服务的时候报错: wrapper | OpenSCManager failed - 拒绝访问. (0x5) 同时 ...

  8. android 判断横竖屏的方法(转)

    public boolean isScreenChange() { Configuration mConfiguration = this.getResources().getConfiguratio ...

  9. 作业二:构建swap函数

    一.swap代码 #include<stdio.h> int main() //主函数部分 { void swap(int *m,int *n); int a,b; int *p1,*p2 ...

  10. SSL Certificate Signed Using Weak Hashing Algorithm 和SSL Medium Strength Cipher Suites Supported的解决方案

    这两天有个项目被扫描器报了几个中危,都是SSL证书的问题.记录一下解决方案吧. 第一个问题:SSL Certificate Signed Using Weak Hashing Algorithm 这里 ...