使用Executor

java.util.concurrent

CachedThreadPool

package concurrency.ExecutorService;

//: concurrency/CachedThreadPool.java
import java.util.concurrent.*; import concurrency.LiftOff.LiftOff; public class CachedThreadPool {
public static void main(String[] args) {
ExecutorService exec = Executors.newCachedThreadPool();
for (int i = 0; i < 5; i++)
exec.execute(new LiftOff());
exec.shutdown();
}
} /*
* Output: (Sample) #0(9), #0(8), #1(9), #2(9), #3(9), #4(9), #0(7), #1(8),
* #2(8), #3(8), #4(8), #0(6), #1(7), #2(7), #3(7), #4(7), #0(5), #1(6), #2(6),
* #3(6), #4(6), #0(4), #1(5), #2(5), #3(5), #4(5), #0(3), #1(4), #2(4), #3(4),
* #4(4), #0(2), #1(3), #2(3), #3(3), #4(3), #0(1), #1(2), #2(2), #3(2), #4(2),
* #0(Liftoff!), #1(1), #2(1), #3(1), #4(1), #1(Liftoff!), #2(Liftoff!),
* #3(Liftoff!), #4(Liftoff!),
*/// :~
    /**
* Creates a thread pool that creates new threads as needed, but
* will reuse previously constructed threads when they are
* available. These pools will typically improve the performance
* of programs that execute many short-lived asynchronous tasks.
* Calls to {@code execute} will reuse previously constructed
* threads if available. If no existing thread is available, a new
* thread will be created and added to the pool. Threads that have
* not been used for sixty seconds are terminated and removed from
* the cache. Thus, a pool that remains idle for long enough will
* not consume any resources. Note that pools with similar
* properties but different details (for example, timeout parameters)
* may be created using {@link ThreadPoolExecutor} constructors.
*
* @return the newly created thread pool
*/
public static ExecutorService newCachedThreadPool() {
return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
60L, TimeUnit.SECONDS,
new SynchronousQueue<Runnable>());
}

以上,JDK里头关于Executors.newCachedThreadPool的定义。

通过创建线程池,去管理线程。并且,线程池通过exec.execute去启动新的线程。

newCachedThreadPool会为每一个任务创建一个线程。

FixedThreadPool

package concurrency.ExecutorService;

//: concurrency/FixedThreadPool.java
import java.util.concurrent.*; import concurrency.LiftOff.LiftOff; public class FixedThreadPool {
public static void main(String[] args) {
// Constructor argument is number of threads:
ExecutorService exec = Executors.newFixedThreadPool(5);
for (int i = 0; i < 5; i++)
exec.execute(new LiftOff());
exec.shutdown();
}
} /*
* Output: (Sample) #0(9), #0(8), #1(9), #2(9), #3(9), #4(9), #0(7), #1(8),
* #2(8), #3(8), #4(8), #0(6), #1(7), #2(7), #3(7), #4(7), #0(5), #1(6), #2(6),
* #3(6), #4(6), #0(4), #1(5), #2(5), #3(5), #4(5), #0(3), #1(4), #2(4), #3(4),
* #4(4), #0(2), #1(3), #2(3), #3(3), #4(3), #0(1), #1(2), #2(2), #3(2), #4(2),
* #0(Liftoff!), #1(1), #2(1), #3(1), #4(1), #1(Liftoff!), #2(Liftoff!),
* #3(Liftoff!), #4(Liftoff!),
*/// :~
newFixedThreadPool会创建指定个数的线程。

SingleThreadExecutor

package concurrency.ExecutorService;

//: concurrency/SingleThreadExecutor.java
import java.util.concurrent.*; import concurrency.LiftOff.LiftOff; public class SingleThreadExecutor {
public static void main(String[] args) {
ExecutorService exec = Executors.newSingleThreadExecutor();
for (int i = 0; i < 5; i++)
exec.execute(new LiftOff());
exec.shutdown();
}
} /*
* Output: #0(9), #0(8), #0(7), #0(6), #0(5), #0(4), #0(3), #0(2), #0(1),
* #0(Liftoff!), #1(9), #1(8), #1(7), #1(6), #1(5), #1(4), #1(3), #1(2), #1(1),
* #1(Liftoff!), #2(9), #2(8), #2(7), #2(6), #2(5), #2(4), #2(3), #2(2), #2(1),
* #2(Liftoff!), #3(9), #3(8), #3(7), #3(6), #3(5), #3(4), #3(3), #3(2), #3(1),
* #3(Liftoff!), #4(9), #4(8), #4(7), #4(6), #4(5), #4(4), #4(3), #4(2), #4(1),
* #4(Liftoff!),
*/// :~
newSingleThreadExecutor线程数为一的newFixedThreadPool。

参考

Java编程思想(第4版)    656页开始

Thinking in Java(第四版 )  1120页开始

Think_in_java_4th(并发学习二)的更多相关文章

  1. Java并发(二十二):定时任务ScheduledThreadPoolExecutor

    需要在理解线程池原理的基础上学习定时任务:Java并发(二十一):线程池实现原理 一.先做总结 通过一个简单示例总结: public static void main(String[] args) { ...

  2. C#高性能大容量SOCKET并发(二):SocketAsyncEventArgs封装

    原文:C#高性能大容量SOCKET并发(二):SocketAsyncEventArgs封装 1.SocketAsyncEventArgs介绍 SocketAsyncEventArgs是微软提供的高性能 ...

  3. 和朱晔一起复习Java并发(二):队列

    和朱晔一起复习Java并发(二):队列 老样子,我们还是从一些例子开始慢慢熟悉各种并发队列.以看小说看故事的心态来学习不会显得那么枯燥而且更容易记忆深刻. 阻塞队列的等待? 阻塞队列最适合做的事情就是 ...

  4. emberjs学习二(ember-data和localstorage_adapter)

    emberjs学习二(ember-data和localstorage_adapter) 准备工作 首先我们加入ember-data和ember-localstorage-adapter两个依赖项,使用 ...

  5. ReactJS入门学习二

    ReactJS入门学习二 阅读目录 React的背景和基本原理 理解React.render() 什么是JSX? 为什么要使用JSX? JSX的语法 如何在JSX中如何使用事件 如何在JSX中如何使用 ...

  6. TweenMax动画库学习(二)

    目录            TweenMax动画库学习(一)            TweenMax动画库学习(二)            TweenMax动画库学习(三)            Tw ...

  7. Java并发编程二三事

    Java并发编程二三事 转自我的Github 近日重新翻了一下<Java Concurrency in Practice>故以此文记之. 我觉得Java的并发可以从下面三个点去理解: * ...

  8. Hbase深入学习(二) 安装hbase

    Hbase深入学习(二) 安装hbase This guidedescribes setup of a standalone hbase instance that uses the local fi ...

  9. 聊聊高并发(二十五)解析java.util.concurrent各个组件(七) 理解Semaphore

    前几篇分析了一下AQS的原理和实现.这篇拿Semaphore信号量做样例看看AQS实际是怎样使用的. Semaphore表示了一种能够同一时候有多个线程进入临界区的同步器,它维护了一个状态表示可用的票 ...

随机推荐

  1. MySQL如何系统学习

    MySQL是当下互联网最流行的开源数据库.不管你使用或者学习何种编程语言,都将会使用到数据库,而MySQL则是应用最为广泛的数据库,没有之一! 之前在我的博客上也发布过一些MySQL优化配置项,都收到 ...

  2. Python __new__ 实现单例模式 python经典面试题

    话不多说,上代码 class Singleton(object): def __new__(cls, *args, **kwargs): if not hasattr(cls, '_instance' ...

  3. laravel的消息队列剖析

    laravel的消息队列剖析 这篇来自于看到朋友转的58沈剑的一篇文章:1分钟实现"延迟消息"功能 在实际工作中也不止遇见过一次这个问题,我在想着以前是怎么处理的呢?我记得当初在上 ...

  4. Redis学习——Linux环境下Redis的安装(一)

    一.关于Redis Redis最为一款开源的key-value存储系统,自推出到现在一直受到编程人员的喜爱.它支持存储多种value类型,String .List .Set .Zset .Hash.这 ...

  5. Unity GC 优化要点

    参考:http://blog.csdn.net/znybn1/article/details/76464896 为啥要点?因为讲的重点. 游戏运行时来存储数据,当这些数据不再被使用时,存储这些数据的内 ...

  6. asp.net core 系列 18 web服务器实现

    一. ASP.NET Core Module 在介绍ASP.NET Core Web实现之前,先来了解下ASP.NET Core Module.该模块是插入 IIS 管道的本机 IIS 模块(本机是指 ...

  7. Nginx 优化静态文件访问

    简介 Web 开发中需要的静态文件有:CSS.JS.字体.图片,可以通过web框架进行访问,但是效率不是最优的. Nginx 对于处理静态文件的效率要远高于 Web 框架,因为可以使用 gzip 压缩 ...

  8. 【Python3爬虫】下载酷狗音乐上的歌曲

    经过测试,可以下载要付费下载的歌曲(n_n) 准备工作:Python3.5+Pycharm 使用到的库:requests,re,json,time,fakeuseragent 步骤: 打开酷狗音乐的官 ...

  9. PE知识复习之PE的RVA与FOA的转换

    PE知识复习之PE的RVA与FOA的转换 一丶简介PE的两种状态 首先我们知道PE有两种状态.一种是内存展开.一种是在文件中的状态.那么此时我们有一个需求. 我们想改变一个全局变量的初始值.此时应该怎 ...

  10. Python四步实现决策树ID3算法,参考机器学习实战

    一.编写计算历史数据的经验熵函数 from math import log def calcShannonEnt(dataSet): numEntries = len(dataSet) labelCo ...