机器学习(七)EM算法、GMM
一、GMM算法
EM算法实在是难以介绍清楚,因此我们用EM算法的一个特例GMM算法作为引入。
1、GMM算法问题描述
GMM模型称为混合高斯分布,顾名思义,它是由几组分别符合不同参数的高斯分布的数据混合而成的。
假设有n个样本点\(x_{1},x_{2},...,x_{n}\),它们来自K个不同的高斯分布。有如下参数:
1、不同高斯分布的数据占比:\(\pi_{i}\)
2、每个高斯分布的均值与方差:\(\pi_{i}~N(\mu_{i},\sigma_{i}^2)\)
我们的目的是求出每个\(\pi_{i}\),\(\mu_{i}\),\(\sigma_{i}\)
因此我们的目标即是求合适的\(\pi_{i}\),\(\mu_{i}\),\(\sigma_{i}\)来最大化对数似然函数。
\[l_{\pi,\mu\sigma}(x)=\sum^{N}_{i=1}log[\sum^{K}_{k=1}\pi_{k}N(x_{I}|\mu_{k},\sigma_{k})]\]
这个目标函数中既有对数又有加和,因此不能直接求导因此我们采用迭代的方法。
2、GMM迭代方法描述
Step1:对于每一个样本点i,计算它由不同组分(第k个组分)生成的概率\[r(i,k)=\dfrac{\pi_{k}N(x_{i}|\mu_{k},\sigma_{k})}{\sum^{K}_{j=1}\pi_{j}N(x_{i}|\mu_{j},\sigma_{j})}\]
Step2:由各个样本点的\(r(i,k)\)更新参数\(\pi_{i}\),\(\mu_{i}\),\(\sigma_{I}\)
Step3:回到Step1,迭代更新
这其实就是EM算法的E步和M步的过程。
下面给出通用的EM算法伪代码。
3、EM算法
Repeat util 收敛{
(E步):对每个样本\(x_{i}\),计算\[Q_{i}(z^{i})=P(z^{i}|x^{i};\theta)\]
(M步):对每个参数\(\theta\),有\[\theta:=argmax_{\theta }l\left( \theta \right) =argmax_{\theta}\sum^{}_{i}\sum^{}_{z^{i}}Q_{i}(z^{i})log\dfrac{P(x_{i};z_{i};\theta)}{Q_{i}(z_{i})}\]
}
其中,E步的那个\(Q\)就是第i个样本的分布,就是那个\(r(i,k)\)
这个形式可以推导可得,其实是等价的
M步中,那个公式就是对数似然函数,求使它最大化的参数
总结:EM算法说到底是一个迭代更新的过程。它首先对各个样本计算分布,然后更新参数;再计算分布,再更新参数……
机器学习(七)EM算法、GMM的更多相关文章
- 斯坦福大学机器学习,EM算法求解高斯混合模型
斯坦福大学机器学习,EM算法求解高斯混合模型.一种高斯混合模型算法的改进方法---将聚类算法与传统高斯混合模型结合起来的建模方法, 并同时提出的运用距离加权的矢量量化方法获取初始值,并采用衡量相似度的 ...
- 机器学习五 EM 算法
目录 引言 经典示例 EM算法 GMM 推导 参考文献: 引言 Expectation maximization (EM) 算法是一种非常神奇而强大的算法. EM算法于 1977年 由Dempster ...
- 机器学习之EM算法(五)
摘要 EM算法全称为Expectation Maximization Algorithm,既最大期望算法.它是一种迭代的算法,用于含有隐变量的概率参数模型的最大似然估计和极大后验概率估计.EM算法经常 ...
- 【机器学习】EM算法详细推导和讲解
今天不太想学习,炒个冷饭,讲讲机器学习十大算法里有名的EM算法,文章里面有些个人理解,如有错漏,还请读者不吝赐教. 众所周知,极大似然估计是一种应用很广泛的参数估计方法.例如我手头有一些东北人的身高的 ...
- 关于机器学习-EM算法新解
我希望自己能通俗地把它理解或者说明白,但是,EM这个问题感觉真的不太好用通俗的语言去说明白,因为它很简单,又很复杂.简单在于它的思想,简单在于其仅包含了两个步骤就能完成强大的功能,复杂在于它的数学推理 ...
- 【机器学习】--EM算法从初识到应用
一.前述 Em算法是解决数学公式的一个算法,是一种无监督的学习. EM算法是一种解决存在隐含变量优化问题的有效方法.EM算法是期望极大(Expectation Maximization)算法的简称,E ...
- 机器学习:EM算法
EM算法 各类估计 最大似然估计 Maximum Likelihood Estimation,最大似然估计,即利用已知的样本结果,反推最有可能(最大概率)导致这样结果的参数值的计算过程. 直白来讲,就 ...
- 机器学习笔记—EM 算法
EM 算法所面对的问题跟之前的不一样,要复杂一些. EM 算法所用的概率模型,既含有观测变量,又含有隐变量.如果概率模型的变量都是观测变量,那么给定数据,可以直接用极大似然估计法,或贝叶斯估计法来估计 ...
- 机器学习-EM算法-GMM模型笔记
GMM即高斯混合模型,下面根据EM模型从理论公式推导GMM: 随机变量X是有K个高斯分布混合而成,取各个高斯分布的概率为φ1,φ2,... ,φK,第i个高斯分布的均值为μi,方差为Σi.若观测到随机 ...
- 【机器学习】GMM和EM算法
机器学习算法-GMM和EM算法 目录 机器学习算法-GMM和EM算法 1. GMM模型 2. GMM模型参数求解 2.1 参数的求解 2.2 参数和的求解 3. GMM算法的实现 3.1 gmm类的定 ...
随机推荐
- 2018-2019 20165221 网络对抗 Exp5 MSF基础
2018-2019 20165221 网络对抗 Exp5 MSF基础 实践内容: 重点掌握metassploit的基本应用方式,重点常用的三种攻击方式的思路.具体需要完成: 一个主动攻击实践,如ms0 ...
- 搭建企业git代码版本管理所需工具
此片文章纯属记录一下使用gitlab搭建私有git版本管理的一些工具及概念. 先记录一下概念 git 是一种版本控制系统,是一个命令,是一种工具 github 是一个基于git实现 ...
- [Kubernetes]关于 Kubernetes ,你想要的,都在这儿了
陆陆续续,关于 Kubernetes 写了有 20+ 篇文章了. 今天这篇文章来一个整合,从实践到理论,可以按需查看(我是按照博客发表时间来排序的,如果后续有想要更新的内容,也会及时更新到这篇文章中) ...
- 变分自编码器(Variational Autoencoder, VAE)通俗教程
原文地址:http://www.dengfanxin.cn/?p=334 1. 神秘变量与数据集 现在有一个数据集DX(dataset, 也可以叫datapoints),每个数据也称为数据点.我们假定 ...
- PC设置局域网打印机
打印机采用局域网网络连接方式,下面以Windows系统为例说明如何添加此打印机. 将电脑接入局域网 在“控制面板”中打开“设备与打印机”,点击“添加打印机” 在弹出列表中,会自动出现打印机型号,选中它 ...
- Beta 冲刺(6/7)
目录 摘要 团队部分 个人部分 摘要 队名:小白吃 组长博客:hjj 作业博客:beta冲刺(6/7) 团队部分 后敬甲(组长) 过去两天完成了哪些任务 ppt制作 视频拍摄 接下来的计划 准备答辩 ...
- tf的一些基本用法
1.tf.where https://blog.csdn.net/ustbbsy/article/details/79564828 2.tf.less tf.less(x,y,name=None) ...
- JSX的替代方案(译文)
原文链接:https://blog.bloomca.me/2019/02/23/alternatives-to-jsx.html JSX作为一种流行的模板语言,在各种框架都得到了广泛的应用.但是,如果 ...
- 提取Jar2Exe源代码,JavaAgent监控法
最近遇见一个麻烦,明明知道是java写的小软件,但是打包成了exe,木得办法,之前打包的都有缓存能在TEMP文件夹找到.这次可不一样了,特此记录一下. 为此特地搜集了一些java打包成exe的软件. ...
- SpringBoot的@Enable*注解的使用介绍
@EnableAsync或@EnableConfigurationProperties背后的运行原理,是使用了@Import注解. @Import({User.class,Role.class,MyC ...