Problem. Suppose $x(t)\in C[0,T]$, and satisfies $$\bex t\in [0,T]\ra 1\leq x(t)\leq C_1+C_2\int_0^t x(\tau)[1+\log x(\tau)]\rd \tau. \eex$$ Prove:

(1)    $x(t)$ is bounded on $[0,T].$

(2)    This is in stark contrast to the estimates like: $$\bex x(t)\leq C_1+C_2\int_0^t x^{1+\ve}(\tau)\rd \tau, \eex$$ which allows blowup of $x$ in finite time. Show that such blowup can happen for $\ve=2$.

Proof. We first show the Gronwall inequality: $$\bee\label{182.Gronwall} \left.\ba{rr} f(t)\leq C_1+C_2\int_0^t g(s)f(s)\rd s\\ g\geq 0,\ \int_0^T g(t)\rd t<\infty \ea\right\}\ra f(t)\leq C_1e^{C_2\int_0^t g(s)\rd s}<\infty. \eee$$ Indeed, $$\beex \bea &\quad\ f(t)\leq C_1+C_2\int_0^t g(s)f(s)\rd s\\ &\ra \frac{C_2g(t)f(t)}{C_1+C_2\int_0^t g(s)f(s)\rd s}\leq C_2g(t)\\ &\ra \ln \frac{C_1+C_2\int_0^t g(s)f(s)\rd s}{C_1}\leq C_2\int_0^t g(s)\rd s\quad\sex{integrating}\\ &\ra C_1+C_2\int_0^t g(s)f(s)\rd s\leq C_1e^{C_2\int_0^tg(s)\rd s}\\ &\ra f(t)\leq C_1e^{C_2\int_0^tg(s)\rd s}. \eea \eeex$$    Then we return to the problem.   (1) $$\beex \bea &\quad\ x(t)\leq C_1+C_2\int_0^t x(\tau)[1+\log x(\tau)]\rd \tau\\ &\ra x(t)\leq C_1e^{C_2\int_0^t[1+\ln x(\tau)]\rd \tau}\quad(\eqref{182.Gronwall})\\ &\ra \ln x(t)\leq \ln C_1+C_2\int_0^t[1+\ln x(\tau)]\rd \tau\\ &\ra \ln x(t)\leq \ln C_1+C_2T+\int_0^t \ln x(\tau)\rd \tau\\ &\ra \ln x(t)\leq (\ln C_1+C_2T)e^{\int_0^t\rd \tau}\quad(\eqref{182.Gronwall}\ again)\\ &\ra x(t)\leq e^{(\ln C_1+C_2T)e^T}<\infty. \eea \eeex$$

(2) Suppose now $$\bex x(t)\leq C_1+C_2\int_0^t x^{2}(\tau)\rd \tau. \eex$$ Let $$\bex f(t)=C_1+C_2\int_0^t x^{2}(\tau)\rd \tau. \eex$$ Then $$\beex \bea &\quad f'(t)=C_2x^2(t)\leq C_2f^2(t)\\ &\ra -\frac{f'(t)}{f^2(t)}\geq -C_2\\ &\ra \frac{1}{f(t)}-\frac{1}{f(0)}\geq -C_2t\\ &\ra f(t)\leq \frac{f(0)}{1-C_2f(0)t}\\ &\ra x(t)\leq f(t)\leq \frac{C_1}{1-C_2C_1t}. \eea \eeex$$ Thus $x(t)$ may blowup at $\dps{t=\frac{1}{C_2C_1}}$.

来源: 家里蹲大学数学杂志第3卷第182期_Blowup_or_Bounded

Gronwall型不等式的更多相关文章

  1. IMO 1977 第 2 题探析

    原题:在一个有限的实数数列中,任意 7 个连续项之和为负数,且任意 11 个连续项之和为正数.求这个数列最多有多少项. 解法一:记这个数列为 a1, a2, ..., ak,问题等价于求 k 的最大值 ...

  2. [再寄小读者之数学篇](2014-10-08 乘积型 Sobolev 不等式)

    $$\bex n\geq 2, 1\leq p<n\ra \sen{f}_{L^\frac{np}{n-p}(\bbR^n)} \leq C\prod_{k=1}^n \sen{\p_k f}_ ...

  3. 乘积型Sobolev不等式

    (Multiplicative Sobolev inequality). Let $\mu,\lambda$ and $\gamma$ be three parameters that satisfy ...

  4. Codevs 3002 石子归并 3(DP四边形不等式优化)

    3002 石子归并 3 时间限制: 1 s 空间限制: 256000 KB 题目等级 : 钻石 Diamond 题目描述 Description 有n堆石子排成一列,每堆石子有一个重量w[i], 每次 ...

  5. 数理统计9:完备统计量,指数族,充分完备统计量法,CR不等式

    昨天我们给出了统计量是UMVUE的一个必要条件:它是充分统计量的函数,且是无偏估计,但这并非充分条件.如果说一个统计量的无偏估计函数一定是UMVUE,那么它还应当具有完备性的条件,这就是我们今天将探讨 ...

  6. ASP.NET Aries 入门开发教程8:树型列表及自定义右键菜单

    前言: 前面几篇重点都在讲普通列表的相关操作. 本篇主要讲树型列表的操作. 框架在设计时,已经把树型列表和普通列表全面统一了操作,用法几乎是一致的. 下面介绍一些差距化的内容: 1:树型列表绑定: v ...

  7. 工厂方法模式——创建型模式02

    1. 简单工厂模式     在介绍工厂方法模式之前,先介绍一下简单工厂模式.虽然简单工厂模式不属于GoF 23种设计模式,但通常将它作为学习其他工厂模式的入门,并且在实际开发中使用的也较为频繁. (1 ...

  8. C++ 事件驱动型银行排队模拟

    最近重拾之前半途而废的C++,恰好看到了<C++ 实现银行排队服务模拟>,但是没有实验楼的会员,看不到具体的实现,正好用来作为练习. 模拟的是银行的排队叫号系统,所有顾客以先来后到的顺序在 ...

  9. Raspkate - 基于.NET的可运行于树莓派的轻量型Web服务器

    最近在业余时间玩玩树莓派,刚开始的时候在树莓派里写一些基于wiringPi库的C语言程序来控制树莓派的GPIO引脚,从而控制LED发光二极管的闪烁,后来觉得,是不是可以使用HTML5+jQuery等流 ...

随机推荐

  1. Django--cookie(登录用)

    一.cookie产生原因 二.cookie的原理图 三.Django中如何设置/读取/删除cookie 四.Django中如何设置cookie的参数 一.cookie产生原因 HTTP协议的无状态保存 ...

  2. CSS---选择器种类 | 层叠性权重

    一.css选择器种类 1.1,ID选择器 1.2,类选择器 1.3,标签选择器 1.4,后代选择器 1.5,子代选择器 1.6,交集选择器 1.7,并集选择器 1.8,通配符选择器 1.9,属性选择器 ...

  3. django--use

    https://docs.djangoproject.com/zh-hans/2.0/intro/

  4. Win7 64位 + LoadRunner 11录制时弹不出IE的解决办法 Win7 64位 + LoadRunner 11录制时弹不出IE的解决办法

    Win7 64位 + LoadRunner 11录制时弹不出IE的解决办法 Win7 64位 + LoadRunner 11录制时弹不出IE的解决办法 1. 卸载IE9( 装了Win7 64位后,默认 ...

  5. Vue 自定义一个插件的用法、小案例及在项目中的应用

    1.开发插件 install有两个参数,第一个是Vue构造器,第二个参数是一个可选的选项对象   MyPlugin.install = function (Vue, options) {   // 1 ...

  6. Java 前后端List传值

    js代码 function click(){ var arrays = new Array(); for (var i = 0; i < arr.length; i++) { arrays.pu ...

  7. openstack网络基础:网络叠加模式VLAN、VxLAN、GRE

    什么是叠加网络1.一个数据包(或帧)封装在另一个数据包内;被封装的包转发到隧道端点后再被拆装.2.叠加网络就是使用这种所谓“包内之包”的技术安全地将一个网络隐藏在另一个 网络中,然后将网络区段进行迁移 ...

  8. docker(四) 使用Dockerfile构建镜像

    下面以一个例子来演示构建镜像的过程. #在/tmp目录下演示 cd tmp mkdir build-redis-image 1.创建Dockerfile文件 vim Dockerfile 并写入如下内 ...

  9. 转:Flutter动画二

    1. 介绍 本文会从代码层面去介绍Flutter动画,因此不会涉及到Flutter动画的具体使用. 1.1 Animation库 Flutter的animation库只依赖两个库,Dart库以及phy ...

  10. 栈(LIFO)

    1 栈的定义 栈是限定在表尾进行插入和删除操作的线性表. 2 栈的特点 1)栈是特殊的线性表,线性表也具有前驱后继性: 2)栈的插入和删除操作只能在表尾即栈顶进行: 3)后进先出. 3 栈的实现及关键 ...