# coding: utf-8

# In[1]:

import pandas as pd
import numpy as np
from sklearn import tree
from sklearn.svm import SVC
from sklearn.grid_search import GridSearchCV
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report, confusion_matrix
from sklearn.preprocessing import binarize
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import OneHotEncoder
from sklearn.preprocessing import Normalizer
from sklearn.metrics import f1_score
from sklearn.metrics import accuracy_score,recall_score,average_precision_score,auc

# In[2]:

data = pd.read_csv("D:/Users/SGG91044/Desktop/MEP_no_defect_data_pivot_test.csv")

# In[3]:

data.head()

# In[4]:

data.drop(columns=["lotid","waferid","defect_count","eqpid","Chamber","Step","Recipie_Name"],inplace=True)
data

# In[5]:

data.iloc[:,0:17] = data.iloc[:,0:17].apply(pd.to_numeric,errors='coerce')

# In[6]:

for i in range(0,17):
med = np.median(data.iloc[:,i][data.iloc[:,i].isna() == False])
data.iloc[:,i] = data.iloc[:,i].fillna(med)

# In[10]:

nz = Normalizer()
X=data.iloc[:,0:19]=pd.DataFrame(nz.fit_transform(data.iloc[:,0:17]),columns=data.iloc[:,0:17].columns)

# In[11]:

X

# In[12]:

X_train, X_test = train_test_split(
X, test_size=0.3, random_state=8)

# In[30]:

# fit the model
clf = IsolationForest( max_samples=10000,random_state=10 )
clf.fit(X_train)
y_pred_train = clf.predict(X_train)
y_pred_test = clf.predict(X_test)

# In[35]:

scores_pred = clf.decision_function(X_train.values)
scores_pred

# In[36]:

clf.decision_function(X_test)

我的代码-unsupervised learning的更多相关文章

  1. Machine Learning Algorithms Study Notes(4)—无监督学习(unsupervised learning)

    1    Unsupervised Learning 1.1    k-means clustering algorithm 1.1.1    算法思想 1.1.2    k-means的不足之处 1 ...

  2. Unsupervised Learning: Use Cases

    Unsupervised Learning: Use Cases Contents Visualization K-Means Clustering Transfer Learning K-Neare ...

  3. Unsupervised Learning and Text Mining of Emotion Terms Using R

    Unsupervised learning refers to data science approaches that involve learning without a prior knowle ...

  4. Supervised Learning and Unsupervised Learning

    Supervised Learning In supervised learning, we are given a data set and already know what our correc ...

  5. Unsupervised learning无监督学习

    Unsupervised learning allows us to approach problems with little or no idea what our results should ...

  6. PredNet --- Deep Predictive coding networks for video prediction and unsupervised learning --- 论文笔记

    PredNet --- Deep Predictive coding networks for video prediction and unsupervised learning   ICLR 20 ...

  7. 131.005 Unsupervised Learning - Cluster | 非监督学习 - 聚类

    @(131 - Machine Learning | 机器学习) 零. Goal How Unsupervised Learning fills in that model gap from the ...

  8. Unsupervised learning, attention, and other mysteries

    Unsupervised learning, attention, and other mysteries Get notified when our free report “Future of M ...

  9. Coursera 机器学习 第8章(上) Unsupervised Learning 学习笔记

    8 Unsupervised Learning8.1 Clustering8.1.1 Unsupervised Learning: Introduction集群(聚类)的概念.什么是无监督学习:对于无 ...

随机推荐

  1. go报错unimplemented: 64-bit mode not compiled in与mingw 64位安装报错ERROR res已解决

    问题一:cc1.exe: sorry, unimplemented: 64-bit mode not compiled in 参考:https://www.cnblogs.com/lesroad/p/ ...

  2. 如何理解JavaScript中的原型和原型链

    首先是一张关系图,避免抽象化理解时产生的困难 Function对象 函数对象是JavaScript学习中不可避免的一部分,而且这一部分相对重要且抽象 函数的创建方式有2种: 字面量创建 var foo ...

  3. mybatis源码解析之Configuration加载(二)

    概述 上一篇我们讲了configuation.xml中几个标签的解析,例如<properties>,<typeAlises>,<settings>等,今天我们来介绍 ...

  4. Java线程面试题Top50

    不管你是新程序员还是老手,你一定在面试中遇到过有关线程的问题.Java 语言一个重要的特点就是内置了对并发的支持,让 Java 大受企业和程序员的欢迎.大多数待遇丰厚的 Java 开发职位都要求开发者 ...

  5. 手把手教你如何使用Cocos2d Console 进行html5项目发布

    手把手教你如何使用Cocos2d Console 进行html5项目发布   1.首先需要先安装Cocos2d Console运行需要的工具. 详情参见 这篇文章 http://www.cocoach ...

  6. ps文件解析(纯c解析代码)

    参考链接:1. PS流的格式和解析总结 http://www.cnblogs.com/lihaiping/p/4181607.html  2. TS科普5 PES包解析 https://blog.cs ...

  7. GridControl 主从模式(Master-detail)子表格获取行数据

    今天遇到一个问题,gridcontrol使用主从表的时候,在子表中获取子表的行数据时居然获取不到,郁闷了很久.然后在网上找到方法(出处在这里:https://q.cnblogs.com/q/83412 ...

  8. Adversarial Examples for Semantic Segmentation and Object Detection 阅读笔记

    Adversarial Examples for Semantic Segmentation and Object Detection (语义分割和目标检测中的对抗样本) 作者:Cihang Xie, ...

  9. 二、Memcached缓存穿透、缓存雪崩

    二.Memcached缓存穿透.缓存雪崩 1. 缓存雪崩 可能是数据魏加载到缓存中,或者缓存同一时间大面积失效,导致大量请求去数据库查询的过程,数据库过载,崩溃. 解决方法: 1 采用加锁计数,使用合 ...

  10. Python PIL

    Python PIL PIL (Python Image Library) 库是Python 语言的一个第三方库,PIL库支持图像存储.显示和处理,能够处理几乎所有格式的图片. 一.PIL库简介 1. ...