我的代码-unsupervised learning
# coding: utf-8
# In[1]:
import pandas as pd
import numpy as np
from sklearn import tree
from sklearn.svm import SVC
from sklearn.grid_search import GridSearchCV
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report, confusion_matrix
from sklearn.preprocessing import binarize
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import OneHotEncoder
from sklearn.preprocessing import Normalizer
from sklearn.metrics import f1_score
from sklearn.metrics import accuracy_score,recall_score,average_precision_score,auc
# In[2]:
data = pd.read_csv("D:/Users/SGG91044/Desktop/MEP_no_defect_data_pivot_test.csv")
# In[3]:
data.head()
# In[4]:
data.drop(columns=["lotid","waferid","defect_count","eqpid","Chamber","Step","Recipie_Name"],inplace=True)
data
# In[5]:
data.iloc[:,0:17] = data.iloc[:,0:17].apply(pd.to_numeric,errors='coerce')
# In[6]:
for i in range(0,17):
med = np.median(data.iloc[:,i][data.iloc[:,i].isna() == False])
data.iloc[:,i] = data.iloc[:,i].fillna(med)
# In[10]:
nz = Normalizer()
X=data.iloc[:,0:19]=pd.DataFrame(nz.fit_transform(data.iloc[:,0:17]),columns=data.iloc[:,0:17].columns)
# In[11]:
X
# In[12]:
X_train, X_test = train_test_split(
X, test_size=0.3, random_state=8)
# In[30]:
# fit the model
clf = IsolationForest( max_samples=10000,random_state=10 )
clf.fit(X_train)
y_pred_train = clf.predict(X_train)
y_pred_test = clf.predict(X_test)
# In[35]:
scores_pred = clf.decision_function(X_train.values)
scores_pred
# In[36]:
clf.decision_function(X_test)
我的代码-unsupervised learning的更多相关文章
- Machine Learning Algorithms Study Notes(4)—无监督学习(unsupervised learning)
1 Unsupervised Learning 1.1 k-means clustering algorithm 1.1.1 算法思想 1.1.2 k-means的不足之处 1 ...
- Unsupervised Learning: Use Cases
Unsupervised Learning: Use Cases Contents Visualization K-Means Clustering Transfer Learning K-Neare ...
- Unsupervised Learning and Text Mining of Emotion Terms Using R
Unsupervised learning refers to data science approaches that involve learning without a prior knowle ...
- Supervised Learning and Unsupervised Learning
Supervised Learning In supervised learning, we are given a data set and already know what our correc ...
- Unsupervised learning无监督学习
Unsupervised learning allows us to approach problems with little or no idea what our results should ...
- PredNet --- Deep Predictive coding networks for video prediction and unsupervised learning --- 论文笔记
PredNet --- Deep Predictive coding networks for video prediction and unsupervised learning ICLR 20 ...
- 131.005 Unsupervised Learning - Cluster | 非监督学习 - 聚类
@(131 - Machine Learning | 机器学习) 零. Goal How Unsupervised Learning fills in that model gap from the ...
- Unsupervised learning, attention, and other mysteries
Unsupervised learning, attention, and other mysteries Get notified when our free report “Future of M ...
- Coursera 机器学习 第8章(上) Unsupervised Learning 学习笔记
8 Unsupervised Learning8.1 Clustering8.1.1 Unsupervised Learning: Introduction集群(聚类)的概念.什么是无监督学习:对于无 ...
随机推荐
- android控件基本布局
<?xml version="1.0" encoding="utf-8"?><RelativeLayout xmlns:android=&qu ...
- Python用起来极度舒适的强大背后
当你使用len(a)获取a的长度,使用obj[key]获取一个key的值时的畅快和舒适,在于Python庞大的设计思想(Pythonic). 而obj[key]背后其实是__getitem__方法,P ...
- git hub 的使用步骤
1:准备环境 ①电脑已安装git ②注册github账号 一:使用git控制台进行本地操作 ①打开 GitBash ②填写用户名和邮箱作为标识 分别输入以下命令: git config --glob ...
- Spring _day02_IoC注解开发入门
1.Spring IoC注解开发入门 1.1 注解开发案例: 创建项目所需要的jar,四个基本的包(beans core context expression ),以及两个日志记录的包,还要AOP的包 ...
- OSI,TCP/IP,五层协议的体系结构,以及各层协议
OSI分层 (7层):物理层.数据链路层.网络层.传输层.会话层.表示层.应用层. TCP/IP分层(4层):网络接口层. 网际层.运输层. 应用层. 五层协议 (5层):物理层.数据链路层.网络层. ...
- 第三周博客之一---Oracle基础知识
一.数据库的定义.作用介绍 1.定义:按照数据结构来组织.存储和管理数据的建立在计算机存储设备上的仓库. 2.数据库的发展历史: 2.1.在1962年数据库一词出现在系统研发的公司的技术备忘录中 2. ...
- 记一次 SSM 分页
1.实体层(entity,pojo,domain) package com.entity; import java.io.Serializable; private int totalCount; / ...
- MySQL 必知必会学习笔记(常用命令二)
CREATE TABLE students(student_id INT UNSIGNED, name VARCHAR(30), sex CHAR(1), birth DATE, PRIMARY KE ...
- Tensorflow实战系列之三:
博主也是初学,能力有限,这个完全没想好..
- adaboost 参数选择
先看下ababoost和决策树效果对比 import numpy as np import matplotlib.pyplot as plt from sklearn.model_selection ...