# coding: utf-8

# In[1]:

import pandas as pd
import numpy as np
from sklearn import tree
from sklearn.svm import SVC
from sklearn.grid_search import GridSearchCV
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report, confusion_matrix
from sklearn.preprocessing import binarize
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import OneHotEncoder
from sklearn.preprocessing import Normalizer
from sklearn.metrics import f1_score
from sklearn.metrics import accuracy_score,recall_score,average_precision_score,auc

# In[2]:

data = pd.read_csv("D:/Users/SGG91044/Desktop/MEP_no_defect_data_pivot_test.csv")

# In[3]:

data.head()

# In[4]:

data.drop(columns=["lotid","waferid","defect_count","eqpid","Chamber","Step","Recipie_Name"],inplace=True)
data

# In[5]:

data.iloc[:,0:17] = data.iloc[:,0:17].apply(pd.to_numeric,errors='coerce')

# In[6]:

for i in range(0,17):
med = np.median(data.iloc[:,i][data.iloc[:,i].isna() == False])
data.iloc[:,i] = data.iloc[:,i].fillna(med)

# In[10]:

nz = Normalizer()
X=data.iloc[:,0:19]=pd.DataFrame(nz.fit_transform(data.iloc[:,0:17]),columns=data.iloc[:,0:17].columns)

# In[11]:

X

# In[12]:

X_train, X_test = train_test_split(
X, test_size=0.3, random_state=8)

# In[30]:

# fit the model
clf = IsolationForest( max_samples=10000,random_state=10 )
clf.fit(X_train)
y_pred_train = clf.predict(X_train)
y_pred_test = clf.predict(X_test)

# In[35]:

scores_pred = clf.decision_function(X_train.values)
scores_pred

# In[36]:

clf.decision_function(X_test)

我的代码-unsupervised learning的更多相关文章

  1. Machine Learning Algorithms Study Notes(4)—无监督学习(unsupervised learning)

    1    Unsupervised Learning 1.1    k-means clustering algorithm 1.1.1    算法思想 1.1.2    k-means的不足之处 1 ...

  2. Unsupervised Learning: Use Cases

    Unsupervised Learning: Use Cases Contents Visualization K-Means Clustering Transfer Learning K-Neare ...

  3. Unsupervised Learning and Text Mining of Emotion Terms Using R

    Unsupervised learning refers to data science approaches that involve learning without a prior knowle ...

  4. Supervised Learning and Unsupervised Learning

    Supervised Learning In supervised learning, we are given a data set and already know what our correc ...

  5. Unsupervised learning无监督学习

    Unsupervised learning allows us to approach problems with little or no idea what our results should ...

  6. PredNet --- Deep Predictive coding networks for video prediction and unsupervised learning --- 论文笔记

    PredNet --- Deep Predictive coding networks for video prediction and unsupervised learning   ICLR 20 ...

  7. 131.005 Unsupervised Learning - Cluster | 非监督学习 - 聚类

    @(131 - Machine Learning | 机器学习) 零. Goal How Unsupervised Learning fills in that model gap from the ...

  8. Unsupervised learning, attention, and other mysteries

    Unsupervised learning, attention, and other mysteries Get notified when our free report “Future of M ...

  9. Coursera 机器学习 第8章(上) Unsupervised Learning 学习笔记

    8 Unsupervised Learning8.1 Clustering8.1.1 Unsupervised Learning: Introduction集群(聚类)的概念.什么是无监督学习:对于无 ...

随机推荐

  1. Linux c codeblock的使用(三):使用函数库

    (一)概念 什么是函数库呢?一下子说概念大家可能不太熟悉,但是这实际上是大家在windows系统上经常见到的东西.没错,就是那些后缀为DLL的文件. linux上实际也有自己的函数库文件,文件类型为. ...

  2. 小谈对Python的认知与期望

    18级新生,在大学之前并未接触过程序语言编程,在众多语言编程中只对C语言有个名字上认知.在上个学期初次了解到Python语言,计算机老师表示Python是现在编程语言中如雨后春笋般的发展飞速的计算机语 ...

  3. React 实战系列:模块化

    本系列以实战为主,通过一个 TODO 应用来学习深入 React. 学习无捷径,唯一的办法就是 coding!coding!coding! 如有不足之处,欢迎大家批评指正,共同进步! 言毕,开始撸

  4. JAVA如何request没有参数的post提交

    过去做网页的时候 post过来的值都是带参的 我就request.getParameter("")来获取 现在过来的不带参 就一串字符串 我应该怎么获取? //用获取数据流的方式, ...

  5. c++面试题一

    c++面试题 1.是不是一个父类写了一个virtual函数,如果子类覆盖他的函数不加virtual, 也能实现多态? virtual 修饰符会被隐形继承的. private也被集成,只事派生类没有访问 ...

  6. day47-python爬虫学习二

    2.Request的会话对象 s = requests.session() Python2 S = requests.Session() 所有一次会话的信息都保存在s中,只需要对s进行操作就可以了. ...

  7. java类的理解和相关问题

    ---java抽象类 当我们定义的对象无法抽象或者不适合抽象为一个具体的类的时候 我们通常定义其为一个抽象类 like 衣服 (多种衣服) 手机 (多种手机) ---接口和抽象类的异同 对于概念上来说 ...

  8. Eclipse使用技巧--自动提示

    window->Preferences->java->Editor->Content Assist 一:Auto activation delay 智能提示反应时间(毫秒) 二 ...

  9. Asp .Net Core Spa (一) - 入门

    第一次写文章, 很久之前就想写来着了, 文章哪里不清楚的, 也请多多提出意见. 最近发现用 .net core + spa (single page application) 这个组合的人也变多了, ...

  10. The Preliminary Contest for ICPC China Nanchang National Invitational I题

    Alice has a magic array. She suggests that the value of a interval is equal to the sum of the values ...