环境
  虚拟机:VMware 10
  Linux版本:CentOS-6.5-x86_64
  客户端:Xshell4
  FTP:Xftp4
  jdk1.8
  scala-2.10.4(依赖jdk1.8)
  spark-1.6

1、读取json格式的文件创建DataFrame
注意:
(1)json文件中的json数据不能嵌套json格式数据。
(2)DataFrame是一个一个Row类型的RDD,df.rdd()/df.javaRdd()。
(3)可以两种方式读取json格式的文件。
sqlContext.read().format(“json”).load(“path”)
sqlContext.read().json(“path”)
(4)df.show()默认显示前20行数据。
(5)DataFrame原生API可以操作DataFrame(不方便)。
(6)注册成临时表时,表中的列默认按ascii顺序显示列。

数据:json
{"name":"zhangsan","age":"20"}
{"name":"lisi"}
{"name":"wangwu","age":"18"}

示例代码:
Java:

package com.wjy.df;

import org.apache.spark.SparkConf;
import org.apache.spark.SparkContext;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.rdd.RDD;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SQLContext; /**
* 读取json格式的文件创建DataFrame
*
* 注意 :json文件中不能嵌套json格式的内容
*
* 1.读取json格式两种方式
* 2.df.show默认显示前20行,使用df.show(行数)显示多行
* 3.df.javaRDD/(scala df.rdd) 将DataFrame转换成RDD
* 4.df.printSchema()显示DataFrame中的Schema信息
* 5.dataFram自带的API 操作DataFrame ,用的少
* 6.想使用sql查询,首先要将DataFrame注册成临时表:df.registerTempTable("jtable"),再使用sql,怎么使用sql?sqlContext.sql("sql语句")
* 7.不能读取嵌套的json文件
* 8.df加载过来之后将列按照ascii排序了
* @author root
*
*/
public class CreateDFFromJosonFile { public static void main(String[] args) {
SparkConf conf = new SparkConf().setMaster("local").setAppName("CreateDFFromJosonFile");
SparkContext sc = new SparkContext(conf);//注意 这里不是JavaSparkContext
//创建SQLContext
SQLContext sqlContext = new SQLContext(sc); /**
* DataFrame的底层是一个一个的RDD RDD的泛型是Row类型。
* 以下两种方式都可以读取json格式的文件
* {"name":"zhangsan","age":"20"}
{"name":"lisi"}
{"name":"wangwu","age":"18"}
*/
DataFrame df = sqlContext.read().format("json").load("./data/json");//{"name":"zhangsan","age":"20"};
df.show();// 显示 DataFrame中的内容,默认显示前20行。如果现实多行要指定多少行show(行数) 注意:当有多个列时,显示的列先后顺序是按列的ascii码先后显示。
DataFrame df2 = sqlContext.read().json("./data/json");
df2.show();
/*
* +----+--------+
| age| name|
+----+--------+
| 20|zhangsan|
|null| lisi|
| 18| wangwu|
+----+--------+
*/ //DataFrame转换成RDD
JavaRDD<Row> javaRDD = df.javaRDD();
//树形的形式显示schema信息
df.printSchema();
/*
* root
|-- age: string (nullable = true)
|-- name: string (nullable = true)
*/ //dataFram自带的API 操作DataFrame 这种方式比较麻烦 用的比较少
//select name from table
df.select("name").show();
/*
* +--------+
| name|
+--------+
|zhangsan|
| lisi|
| wangwu|
+--------+
*/
//select name ,age+10 as addage from table
df.select(df.col("name"),df.col("age").plus(10).alias("addage")).show();
/*
* +--------+------+
| name|addage|
+--------+------+
|zhangsan| 30.0|
| lisi| null|
| wangwu| 28.0|
+--------+------+
*/
//select name ,age from table where age>19
df.select(df.col("name"),df.col("age")).where(df.col("age").gt(19)).show();
/*
* +--------+---+
| name|age|
+--------+---+
|zhangsan| 20|
+--------+---+
*/
//select age,count(*) from table group by age
df.groupBy(df.col("age")).count().show();
/*
* +----+-----+
| age|count|
+----+-----+
| 18| 1|
| 20| 1|
|null| 1|
+----+-----+
*/ //将DataFrame注册成临时的一张表,这张表相当于临时注册到内存中,是逻辑上的表,不会物化到磁盘 这种方式用的比较多
df.registerTempTable("person");
DataFrame df3 = sqlContext.sql("select age,count(*) as gg from person group by age");
df3.show();
DataFrame df4 = sqlContext.sql("select age, name from person");
df4.show(); sc.stop();
} }

Scala:

package com.wjy.df

import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import org.apache.spark.sql.SQLContext object CreateDFFromJsonFile {
def main(args:Array[String]):Unit={
val conf = new SparkConf().setMaster("local").setAppName("CreateDFFromJsonFile");
val sc = new SparkContext(conf);
val sqlContext = new SQLContext(sc); val df1 = sqlContext.read.json("./data/json");
df1.show();
val df2 = sqlContext.read.format("json").load("./data/json");
df2.show(); val rdd = df1.rdd;
df1.printSchema(); //select name from table
df1.select(df1.col("name")).show();
//select name from table where age>19
df1.select(df1.col("name"),df1.col("age")).where(df1.col("age").gt(19)).show();
//select count(*) from table group by age
df1.groupBy(df1.col("age")).count().show(); //注册临时表
df1.registerTempTable("person");
val df3 = sqlContext.sql("select * from person");
df3.show();
/*
* +----+--------+
| age| name|
+----+--------+
| 20|zhangsan|
|null| lisi|
| 18| wangwu|
+----+--------+
*/
sc.stop();
}
}

2、通过json格式的RDD创建DataFrame
RDD的元素类型是String,但是格式必须是JSON格式
示例代码:
Java:

package com.wjy.df;

import java.util.Arrays;

import org.apache.spark.SparkConf;
import org.apache.spark.SparkContext;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.SQLContext; public class CreateDFFromJsonRDD { public static void main(String[] args) {
SparkConf conf = new SparkConf().setMaster("local").setAppName("CreateDFFromJsonRDD");
//SparkContext sc = new SparkContext(conf);
JavaSparkContext sc = new JavaSparkContext(conf);
SQLContext sqlContext = new SQLContext(sc);
JavaRDD<String> javaRDD1 = sc.parallelize(Arrays.asList("{'name':'zhangsan','age':\"18\"}",
"{\"name\":\"lisi\",\"age\":\"19\"}",
"{\"name\":\"wangwu\",\"age\":\"20\"}")); JavaRDD<String> javaRDD2 = sc.parallelize(Arrays.asList("{\"name\":\"zhangsan\",\"score\":\"100\"}",
"{\"name\":\"lisi\",\"score\":\"200\"}",
"{\"name\":\"wangwu\",\"score\":\"300\"}")); DataFrame namedf = sqlContext.read().json(javaRDD1);
namedf.show();
DataFrame scoredf = sqlContext.read().json(javaRDD2);
scoredf.show(); //DataFrame原生API使用
//SELECT t1.name,t1.age,t2.score from t1, t2 where t1.name = t2.name
namedf.join(scoredf, namedf.col("name").$eq$eq$eq(scoredf.col("name")))
.select(namedf.col("name"),namedf.col("age"),scoredf.col("score")).show(); //注册成临时表
namedf.registerTempTable("name");
scoredf.registerTempTable("score");
//如果自己写的sql查询得到的DataFrame结果中的列会按照 查询的字段顺序返回
DataFrame result = sqlContext.sql("select name.name,name.age,score.score "
+ "from name join score "
+ "on name.name = score.name");
result.show();
/*
* +--------+---+-----+
| name|age|score|
+--------+---+-----+
|zhangsan| 18| 100|
| lisi| 19| 200|
| wangwu| 20| 300|
+--------+---+-----+
*/ sc.stop();
} }

Scala:

package com.wjy.df

import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import org.apache.spark.sql.SQLContext object CreateDFFromJsonRDD {
def main(args:Array[String]):Unit={
val conf = new SparkConf().setMaster("local").setAppName("CreateDFFromJsonRDD");
val sc = new SparkContext(conf);
val sqlContext = new SQLContext(sc);
val rdd1 = sc.makeRDD(Array(
"{\"name\":\"zhangsan\",\"age\":18}",
"{\"name\":\"lisi\",\"age\":19}",
"{\"name\":\"wangwu\",\"age\":20}"
));
val rdd2 = sc.makeRDD(Array(
"{\"name\":\"zhangsan\",\"score\":100}",
"{\"name\":\"lisi\",\"score\":200}",
"{\"name\":\"wangwu\",\"score\":300}"
));
val namedf = sqlContext.read.json(rdd1);
val scoredf = sqlContext.read.json(rdd2);
namedf.registerTempTable("name");
scoredf.registerTempTable("score");
val result = sqlContext.sql("select name.name,name.age,score.score from name,score where name.name = score.name");
result.show(); sc.stop();
}
}

3、通过非json格式的RDD来创建出来一个DataFrame
(1)通过反射的方式 (不建议使用)
(1.1)自定义类要可序列化(注意变量被关键字transient修饰 则不会被序列化;静态变量也不能被序列化)
注意ava中以下几种情况下不被序列化的问题:
  1.1.1.反序列化时serializable 版本号不一致时会导致不能反序列化。
  1.1.2.子类中实现了serializable接口,父类中没有实现,父类中的变量不能被序列化,序列化后父类中的变量会得到null。
  注意:父类实现serializable接口,子类没有实现serializable接口时,子类可以正常序列化
  1.1.3.被关键字transient修饰的变量不能被序列化。
  1.1.4.静态变量不能被序列化,属于类,不属于方法和对象,所以不能被序列化。
另外:一个文件多次writeObject时,如果有相同的对象已经写入文件,那么下次再写入时,只保存第二次写入的引用,读取时,都是第一次保存的对象。
(1.2)自定义类的访问级别是Public
(1.3)RDD转成DataFrame后会根据映射将字段按Assci码排序
(1.4)将DataFrame转换成RDD时获取字段两种方式,一种是df.getInt(0)下标获取(不推荐使用),另一种是df.getAs(“列名”)获取(推荐使用)
示例代码:
Java:

package com.wjy.df;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.VoidFunction;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SQLContext; /**
* @author Administrator
* 通过反射的方式将非json格式的RDD转换成DataFrame
* 注意:这种方式不推荐使用
*/
public class CreateDFFromRDDWithReflect { public static void main(String[] args) {
SparkConf conf = new SparkConf().setMaster("local").setAppName("CreateDFFromRDDWithReflect");
JavaSparkContext sc = new JavaSparkContext(conf);
SQLContext sqlContext = new SQLContext(sc);
/*
* 1,zhansan,18
2,lisi,19
3,wangwu,20
*/
JavaRDD<String> lineRDD = sc.textFile("./data/person.txt");
JavaRDD<Person> personRDD = lineRDD.map(new Function<String, Person>() {
private static final long serialVersionUID = 1L;
@Override
public Person call(String line) throws Exception {
String[] ss = line.split(",");
Person p = new Person();
p.setId(ss[0]);
p.setName(ss[1]);
p.setAge(Integer.valueOf(ss[2]));
return p;
}
}); /**
* 传入进去Person.class的时候,sqlContext是通过反射的方式创建DataFrame
* 在底层通过反射的方式获得Person的所有field,结合RDD本身,就生成了DataFrame
*/
DataFrame df1 = sqlContext.createDataFrame(personRDD, Person.class);
df1.show();
df1.printSchema(); df1.registerTempTable("person");
DataFrame ret = sqlContext.sql("select name,id,age from person where id = 2");
ret.show(); /*
* +----+---+---+
|name| id|age|
+----+---+---+
|lisi| 2| 19|
+----+---+---+
*/ /**
* 将DataFrame转成JavaRDD
* 注意:
* 1.可以使用row.getInt(0),row.getString(1)...通过下标获取返回Row类型的数据,但是要注意列顺序问题---不常用
* 2.可以使用row.getAs("列名")来获取对应的列值。
*/
JavaRDD<Row> javaRDD = ret.javaRDD();
JavaRDD<Person> map = javaRDD.map(new Function<Row, Person>() {
private static final long serialVersionUID = 1L; @Override
public Person call(Row row) throws Exception {
//顺序和ret一致
Person p = new Person();
// p.setId(row.getString(1));
// p.setName(row.getString(0));
// p.setAge(row.getInt(2)); p.setId(row.getAs("id"));
p.setName(row.getAs("name"));
p.setAge(row.getAs("age")); return p;
}
}); map.foreach(new VoidFunction<Person>() {
private static final long serialVersionUID = 1L; @Override
public void call(Person p) throws Exception {
System.out.println(p);
}
}); sc.stop();
} }

Scala:

package com.wjy.df

import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import org.apache.spark.sql.SQLContext //case class 默认是可以序列化的,也就是实现了Serializable;ase class构造函数的参数是public级别
case class Person(id:String,name:String,age:Integer); object CreateDFFromRDDWithReflect {
def main(args:Array[String]):Unit={
val conf = new SparkConf().setMaster("local").setAppName("CreateDFFromRDDWithReflect");
val sc = new SparkContext(conf);
val sqlContext = new SQLContext(sc); val lineRDD = sc.textFile("./data/person.txt");
val personRDD = lineRDD.map { x => {
val p = Person(x.split(",")(0), x.split(",")(1), Integer.valueOf(x.split(",")(2)));
p
}};
//将RDD隐式转换成DataFrame
import sqlContext.implicits._
val df = personRDD.toDF();
df.show();
/*
* +---+-------+---+
| id| name|age|
+---+-------+---+
| 1|zhansan| 18|
| 2| lisi| 19|
| 3| wangwu| 20|
+---+-------+---+
*/ //DataFrame转成RDD
val rdd = df.rdd;
val result = rdd.map { x => {
Person(x.getAs("id"),x.getAs("name"),x.getAs("age"));
}};
result.foreach {println};
/*
* Person(1,zhansan,18)
Person(2,lisi,19)
Person(3,wangwu,20)
*/ sc.stop();
}
}

(2)动态创建schema的方式
示例代码:
Java:

package com.wjy.df;

import java.util.Arrays;
import java.util.List; import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.sql.SQLContext;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.StructField;
import org.apache.spark.sql.types.StructType; /**
* @author Administrator
*
* 动态创建Schema将非json格式RDD转换成DataFrame
*/
public class CreateDFFromRDDWithStruct { public static void main(String[] args) {
SparkConf conf = new SparkConf().setMaster("local").setAppName("CreateDFFromRDDWithStruct");
JavaSparkContext sc = new JavaSparkContext(conf);
SQLContext sqlContext = new SQLContext(sc);
JavaRDD<String> lineRDD = sc.textFile("./data/person.txt"); //转换成Row类型的RDD
JavaRDD<Row> rowrdd = lineRDD.map(new Function<String, Row>() {
private static final long serialVersionUID = 1L;
@Override
public Row call(String line) throws Exception {
String[] ss = line.split(",");
return RowFactory.create(ss[0],ss[1],Integer.valueOf(ss[2]));
}
}); //动态构建DataFrame中的元数据,一般来说这里的字段可以来源自字符串,也可以来源于外部数据库
List<StructField> asList = Arrays.asList(
DataTypes.createStructField("id", DataTypes.StringType, true),
DataTypes.createStructField("name", DataTypes.StringType, true),
DataTypes.createStructField("age", DataTypes.IntegerType, true)
);
//根据元数据创建schema
StructType schema = DataTypes.createStructType(asList);
//根据row和schema创建DataFrame
DataFrame df = sqlContext.createDataFrame(rowrdd, schema);
df.show();
/*
* +---+-------+---+
| id| name|age|
+---+-------+---+
| 1|zhansan| 18|
| 2| lisi| 19|
| 3| wangwu| 20|
+---+-------+---+
*/ sc.stop();
} }

Scala:

package com.wjy.df

import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import org.apache.spark.sql.SQLContext
import org.apache.spark.sql.RowFactory
import org.apache.spark.sql.types.StructType
import org.apache.spark.sql.types.StringType
import org.apache.spark.sql.types.StructField
import org.apache.spark.sql.types.IntegerType object CreateDFFromRDDWithStruct {
def main(args:Array[String]):Unit={
val conf = new SparkConf().setMaster("local").setAppName("CreateDFFromRDDWithStruct");
val sc = new SparkContext(conf);
val sqlContext = new SQLContext(sc);
val lineRDD = sc.textFile("./data/person.txt");
//row
val rowRDD = lineRDD.map { x => {
val ss = x.split(",");
RowFactory.create(ss(0),ss(1),Integer.valueOf(ss(2)));
}};
//schema
val schema = StructType(List(
StructField("id",StringType,true),
StructField("name",StringType,true),
StructField("age",IntegerType,true)
));
//根据row和schema创建DataFrame
val df = sqlContext.createDataFrame(rowRDD, schema);
df.show(); sc.stop();
}
}

4、读取parquet文件创建DF
注意:
可以将DataFrame存储成parquet文件。保存成parquet文件的方式有两种
df.write().mode(SaveMode.Overwrite)format("parquet").save("./sparksql/parquet");
df.write().mode(SaveMode.Overwrite).parquet("./sparksql/parquet");
SaveMode指定文件保存时的模式。
  Overwrite:覆盖
  Append:追加
  ErrorIfExists:如果存在就报错
  Ignore:如果存在就忽略

示例代码:
Java:

package com.wjy.df;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.SQLContext;
import org.apache.spark.sql.SaveMode; public class CreateDFFromParquet { public static void main(String[] args) {
SparkConf conf = new SparkConf().setMaster("local").setAppName("CreateDFFromParquet");
JavaSparkContext sc = new JavaSparkContext(conf);
SQLContext sqlContext = new SQLContext(sc);
JavaRDD<String> jsonRDD = sc.textFile("./data/json");
DataFrame dataFrame = sqlContext.read().json(jsonRDD);
dataFrame.show();
/**
* 将DataFrame保存成parquet文件,
* SaveMode指定存储文件时的保存模式:
* Overwrite:覆盖
* Append:追加
* ErrorIfExists:如果存在就报错
* Ignore:如果存在就忽略
* 保存成parquet文件有以下两种方式:
*/
//方式一:save
dataFrame.write().mode(SaveMode.Overwrite).format("parquet").save("./data/parquet");
//方式二:parquet
dataFrame.write().mode(SaveMode.Ignore).parquet("./data/parquet");
/*
* Initialized Parquet WriteSupport with Catalyst schema:
{
"type" : "struct",
"fields" : [ {
"name" : "age",
"type" : "string",
"nullable" : true,
"metadata" : { }
}, {
"name" : "name",
"type" : "string",
"nullable" : true,
"metadata" : { }
} ]
}
and corresponding Parquet message type:
message spark_schema {
optional binary age (UTF8);
optional binary name (UTF8);
} */ /**
* 加载parquet文件成DataFrame
* 加载parquet文件有以下两种方式:
*/
//方式一:load
DataFrame df1 = sqlContext.read().format("parquet").load("./data/parquet");
df1.show();
//方式二:parquet
DataFrame df2 = sqlContext.read().parquet("./data/parquet");
df2.show(); sc.stop();
} }

Scala:

package com.wjy.df

import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import org.apache.spark.sql.SQLContext
import org.apache.spark.sql.SaveMode object CreateDFFromParquet {
def main(args:Array[String]):Unit={
val conf = new SparkConf().setMaster("local").setAppName("CreateDFFromParquet");
val sc = new SparkContext(conf);
val sqlContext = new SQLContext(sc);
val jsonRDD = sc.textFile("./data/json");
val df = sqlContext.read.json(jsonRDD);
df.show(); /**
* 将DF保存为parquet文件
*/
df.write.mode(SaveMode.Overwrite).format("parquet").save("./data/parquet");
df.write.mode(SaveMode.Ignore).parquet("./data/parquet"); /**
* 读取parquet文件
*/
val df1 = sqlContext.read.format("parquet").load("./data/parquet");
df1.show();
val df2 = sqlContext.read.parquet("./data/parquet");
df.show(); sc.stop();
}
}

5、读取JDBC中的数据创建DataFrame(MySql为例)
两种方式创建DataFrame
第一种方式读取MySql数据库表,加载为DataFrame
第二种方式读取MySql数据表加载为DataFrame
示例代码:
Java:

package com.wjy.df;

import java.util.HashMap;
import java.util.Map;
import java.util.Properties; import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.DataFrameReader;
import org.apache.spark.sql.SQLContext;
import org.apache.spark.sql.SaveMode; public class CreateDFFromMysql { public static void main(String[] args) {
SparkConf conf = new SparkConf().setMaster("local").setAppName("CreateDFFromMysql");
/**
* 配置join或者聚合操作shuffle数据时分区的数量
*/
conf.set("spark.sql.shuffle.partitions", "1");
JavaSparkContext sc = new JavaSparkContext(conf);
SQLContext sqlContext = new SQLContext(sc); /**
* 第一种方式读取MySql数据库表,加载为DataFrame
*/
Map<String, String> options = new HashMap<String,String>();
options.put("url", "jdbc:mysql://134.32.123.101:3306/spark");
options.put("driver", "com.mysql.jdbc.Driver");
options.put("user", "root");
options.put("password", "123456");
options.put("dbtable", "person");
DataFrame df1 = sqlContext.read().format("jdbc").options(options).load();
df1.show();
df1.registerTempTable("person1"); /**
* 第二种方式读取MySql数据表加载为DataFrame
*/
DataFrameReader reader = sqlContext.read().format("jdbc");
reader.option("url", "jdbc:mysql://134.32.123.101:3306/spark");
reader.option("driver", "com.mysql.jdbc.Driver");
reader.option("user", "root");
reader.option("password", "123456");
reader.option("dbtable", "score");
DataFrame df2 = reader.load();
df2.show();
df2.registerTempTable("score1"); DataFrame dataFrame = sqlContext.sql("select person1.id,person1.name,person1.age,score1.score "
+ "from person1,score1 "
+ "where person1.name = score1.name");
dataFrame.show(); /**
* 将DataFrame结果保存到Mysql中
*/
Properties properties = new Properties();
properties.setProperty("user", "root");
properties.setProperty("password", "123456");
/**
* SaveMode:
* Overwrite:覆盖
* Append:追加
* ErrorIfExists:如果存在就报错
* Ignore:如果存在就忽略
*
*/
dataFrame.write().mode(SaveMode.Overwrite).jdbc("jdbc:mysql://134.32.123.101:3306/spark", "result", properties);
System.out.println("----Finish----"); sc.stop();
} }

Scala:

package com.wjy.df

import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import org.apache.spark.sql.SQLContext
import java.util.HashMap
import java.util.Properties
import org.apache.spark.sql.SaveMode object CreateDFFromMysql {
def main(args:Array[String]):Unit={
val conf = new SparkConf().setMaster("local").setAppName("CreateDFFromMysql");
val sc = new SparkContext(conf);
val sqlContext = new SQLContext(sc); /**
* 第一种方式读取Mysql数据库表创建DF
*/
val options = new HashMap[String,String]();
options.put("url", "jdbc:mysql://134.32.123.101:3306/spark")
options.put("driver","com.mysql.jdbc.Driver")
options.put("user","root")
options.put("password", "123456")
options.put("dbtable","person")
val df1 = sqlContext.read.format("jdbc").options(options).load();
df1.show();
df1.registerTempTable("person"); /**
* 第二种方式读取Mysql数据库表创建DF
*/
var reader = sqlContext.read.format("jdbc");
reader.option("url", "jdbc:mysql://134.32.123.101:3306/spark")
reader.option("driver","com.mysql.jdbc.Driver")
reader.option("user","root")
reader.option("password","123456")
reader.option("dbtable", "score")
val df2 = reader.load();
df2.show();
df2.registerTempTable("score"); val result = sqlContext.sql("select person.id,person.name,score.score from person,score where person.name = score.name")
result.show() /**
* 将数据写入到Mysql表中
*/
val properties = new Properties()
properties.setProperty("user", "root")
properties.setProperty("password", "123456")
result.write.mode(SaveMode.Overwrite).jdbc("jdbc:mysql://134.32.123.101:3306/spark", "result", properties); sc.stop();
}
}

6、读取Hive中的数据加载成DataFrame
HiveContext是SQLContext的子类,连接Hive建议使用HiveContext。
由于本地没有Hive环境,要提交到集群运行,提交命令:

./spark-submit
--master spark://node1:7077,node2:7077
--executor-cores
--executor-memory 2G
--total-executor-cores
--class com.bjsxt.sparksql.dataframe.CreateDFFromHive
/root/test/HiveTest.jar

示例代码:
Java:

package com.wjy.df;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SaveMode;
import org.apache.spark.sql.hive.HiveContext; /**
* 如果读取hive中数据,要使用HiveContext
* HiveContext.sql(sql)可以操作hive表,还可以操作虚拟的表
*
*/
public class CreateDFFromHive { public static void main(String[] args) {
//不能设置local了 需要打成jar在hive上运行
SparkConf conf = new SparkConf().setAppName("CreateDFFromHive");
JavaSparkContext sc = new JavaSparkContext(conf);
//HiveContext是SQLContext的子类。 使用hive sql操作
HiveContext hiveContext = new HiveContext(sc);
hiveContext.sql("USE Spark");//使用spark数据库 //表student_infos
hiveContext.sql("drop table if exists student_infos");//删除表
hiveContext.sql("CREATE TABLE IF NOT EXISTS student_infos (name STRING,age INT) row format delimited fields terminated by '\t' ");//创建表
hiveContext.sql("load data local inpath '/root/test/student_infos' into table student_infos");//hive加载数据 //表student_scores
hiveContext.sql("DROP TABLE IF EXISTS student_scores");
hiveContext.sql("CREATE TABLE IF NOT EXISTS student_scores (name STRING, score INT) row format delimited fields terminated by '\t'");
hiveContext.sql("LOAD DATA LOCAL INPATH '/root/test/student_scores' INTO TABLE student_scores"); /**
* 查询表生成DataFrame
*/
DataFrame student_infos = hiveContext.table("student_infos");
student_infos.show();
DataFrame student_scores = hiveContext.table("student_scores");
student_scores.show();
DataFrame goodStudentsDF = hiveContext.sql("SELECT si.name, si.age, ss.score "
+ "FROM student_infos si "
+ "JOIN student_scores ss "
+ "ON si.name=ss.name "
+ "WHERE ss.score>=80");
goodStudentsDF.show();
goodStudentsDF.registerTempTable("goodStudent");
DataFrame result = hiveContext.sql("select * from goodstudent");
result.show(); /**
* 将结果保存到hive表 good_student_infos
*/
hiveContext.sql("DROP TABLE IF EXISTS good_student_infos");
goodStudentsDF.write().mode(SaveMode.Overwrite).saveAsTable("good_student_infos");
DataFrame table = hiveContext.table("good_student_infos");
Row[] rows = table.collect();
for (Row row:rows)
{
System.out.println(row);
} sc.stop();
} }

Scala:

package com.wjy.df

import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import org.apache.spark.sql.hive.HiveContext
import org.apache.spark.sql.SaveMode object CreateDFFromHive {
def main(args:Array[String]):Unit={
//依赖hive 不能设置local模式
val conf = new SparkConf().setAppName("CreateDFFromHive");
val sc = new SparkContext(conf);
/**
* HiveContext是SQLContext的子类。
*/
val hiveContext = new HiveContext(sc);
hiveContext.sql("use spark")
//student_infos
hiveContext.sql("drop table if exists student_infos")
hiveContext.sql("create table if not exists student_infos (name string,age int) row format delimited fields terminated by '\t'")
hiveContext.sql("load data local inpath '/root/test/student_infos' into table student_infos")
val df1 = hiveContext.table("student_infos");
df1.show(); //student_scores
hiveContext.sql("drop table if exists student_scores")
hiveContext.sql("create table if not exists student_scores (name string,score int) row format delimited fields terminated by '\t'")
hiveContext.sql("load data local inpath '/root/test/student_scores' into table student_scores")
val df2 = hiveContext.table("student_scores");
df2.show(); val df = hiveContext.sql("select si.name,si.age,ss.score from student_infos si,student_scores ss where si.name = ss.name")
df.show(); /**
* 将结果写入到hive表中
*/
//good_student_infos
hiveContext.sql("drop table if exists good_student_infos")
df.write.mode(SaveMode.Overwrite).saveAsTable("good_student_infos"); sc.stop();
}
}

附:Spark On Hive的配置
1、在Spark客户端配置Hive On Spark
在Spark客户端安装包下spark-1.6.0/conf中创建文件hive-site.xml:
配置hive的metastore路径

<configuration>
<property>
<name>hive.metastore.uris</name>
<value>thrift://node1:9083</value>
</property>
</configuration>

2、启动Hive的metastore服务
hive --service metastore

3、启动zookeeper集群,启动HDFS集群,启动spark集群。

4、启动SparkShell 读取Hive中的表总数,对比hive中查询同一表查询总数测试时间。

./spark-shell
--master spark://node1:7077,node2:7077
--executor-cores
--executor-memory 1g
--total-executor-cores ...... scala>import org.apache.spark.sql.hive.HiveContext;
scala>val hc = new HiveContext(sc);
scala>hc.sql("show databases").show();
scala>hc.sql("user default").show();
scala>hc.sql("select count(*) from jizhan").show();

注意:
如果使用Spark on Hive 查询数据时,出现错误:Caused by:java.net.UnkonwnHostException:....
找不到HDFS集群路径,要在客户端机器conf/spark-env.sh中设置HDFS的路径:

export HADOOP_CONF_DIR=$HADOOP_HOME/etc/hadoop

参考:
Spark

【Spark-SQL学习之二】 SparkSQL DataFrame创建和储存的更多相关文章

  1. Spark SQL中 RDD 转换到 DataFrame (方法二)

    强调它与方法一的区别:当DataFrame的数据结构不能够被提前定义.例如:(1)记录结构已经被编码成字符串 (2) 结构在文本文件中,可能需要为不同场景分别设计属性等以上情况出现适用于以下方法.1. ...

  2. spark SQL学习(认识spark SQL)

    spark SQL初步认识 spark SQL是spark的一个模块,主要用于进行结构化数据的处理.它提供的最核心的编程抽象就是DataFrame. DataFrame:它可以根据很多源进行构建,包括 ...

  3. Spark SQL概念学习系列之为什么使用 Spark SQL?(二)

    简单地说,Shark 的下一代技术 是Spark SQL. 由于 Shark 底层依赖于 Hive,这个架构的优势是对传统 Hive 用户可以将 Shark 无缝集成进现有系统运行查询负载. 但是也看 ...

  4. spark SQL学习(案例-统计每日uv)

    需求:统计每日uv package wujiadong_sparkSQL import org.apache.spark.sql.{Row, SQLContext} import org.apache ...

  5. spark SQL学习(spark连接hive)

    spark 读取hive中的数据 scala> import org.apache.spark.sql.hive.HiveContext import org.apache.spark.sql. ...

  6. spark SQL学习(load和save操作)

    load操作:主要用于加载数据,创建出DataFrame save操作:主要用于将DataFrame中的数据保存到文件中 代码示例(默认为parquet数据源类型) package wujiadong ...

  7. spark SQL学习(spark连接 mysql)

    spark连接mysql(打jar包方式) package wujiadong_sparkSQL import java.util.Properties import org.apache.spark ...

  8. spark SQL学习(数据源之json)

    准备工作 数据文件students.json {"id":1, "name":"leo", "age":18} {&qu ...

  9. Spark SQL中 RDD 转换到 DataFrame

    1.people.txtsoyo8, 35小周, 30小华, 19soyo,882./** * Created by soyo on 17-10-10. * 利用反射机制推断RDD模式 */impor ...

随机推荐

  1. Tips_利用padding实现高度可控的分隔线

    一.实现分隔线的方法(未理解:不是说span元素垂直方向设置怕padding不影响吗?) html: <div> 登陆<span></span>注册 </di ...

  2. PCB布局布线

    1.关键芯片的物理位置,明细信号流向,防止关键信号交叉,高速线布线通畅. 2.可装配,可维修,可测试. 3.模拟电路和数字电路分区摆放. 4.疏密有序. 5.原理图应该明确主芯片周边元件的布局要求. ...

  3. 菜鸟详细解析Cookie注入原理

    一.SQL注入原理 我以aspx为例,现在我们来研究下Cookie注入是怎么产生的,在获取URL参数的时候,如果在代码中写成Request[“id”],这样的写法问题就出现了.我先普及下科普知识,在a ...

  4. vue table 固定首列和首行

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <meta name ...

  5. rbac权限控制,基于无线分类

    2018年9月18日11:21:28 数据库结构 CREATE TABLE `admin` ( `id` bigint(20) unsigned NOT NULL AUTO_INCREMENT, `c ...

  6. css学习_css补充知识

    1.渐进增强,优雅降级 2.浏览器前缀 3.背景渐变   4.css  验证工具 2种方式:第2种支持验证本地的css(推荐) 5.css压缩  ----(节约空间,节省带宽) 6.旋转轮播图 案例: ...

  7. 刷榜中ASO优化中下载量与评论之间的对应比

    刷榜中ASO优化中下载量与评论之间是怎么样对应,我们都知道,在ASO优化的过程中,ASO优化师在做下载量后的二至三天,都会顺带着做一下评论.这时候问题就来了,下载量与评论的比例关系应该如何确定呢?最近 ...

  8. nodejs技术升阶思路

    经历一两年的node后端开发,熟悉了node原生api.常用包.数据库操作语句.一两个框架等,技术会达到一个瓶颈.如果没有足够的动力去深入,很容易老死在这个瓶颈上. 下面总结一下,提升点和方向: 站在 ...

  9. android上的bin/sbin/xbin等各种目录

    1. /system是用于存储 由AOSP构建生成的 不可变组件的 主要Android目录.这包括本机二进制文件,本机库,框架包和存储主要的应用程序.它通常是从根文件系统的单独映像中以只读方式挂载的, ...

  10. sudo: java 找不到命令

    解决方法: :~$ sudo visudo 在secure_path后加上JDK工具的路径,如: :/jdk安装路径/jdk1..0_144/bin 之后就可以使用"sudo java *. ...