tf的一些基本用法
1、tf.where
https://blog.csdn.net/ustbbsy/article/details/79564828
2、tf.less
tf.less(x,y,name=None)
返回bool型tensor,返回逐元素x<y比较的结果
3、tf.gather
根据索引值,将对应tensor的元素提取出来,组成新的tensor
https://blog.csdn.net/Cyiano/article/details/76087747
4、tf.train.exponential_decay
tf.train.exponential_decay(
learning_rate,
global_step,
decay_steps,
decay_rate,
staircase=False,
name=None
)
decayed_learning_rate = learning_rate *
decay_rate ^ (global_step / decay_steps)
当staircase=True时,(
global_step / decay_steps)取整,即每decay_step次迭代时,lr*decay_rate
https://www.tensorflow.org/api_docs/python/tf/train/exponential_decay
5、name_scope和variable_scope
(1) tf.variable_scope`和`tf.get_variable`必须要搭配使用(全局scope除外),为share提供支持。
(2) tf.Variable`可以单独使用,也可以搭配`tf.name_scope`使用,给变量分类命名,模块化。
(3) tf.Variable`和`tf.variable_scope`搭配使用不伦不类,不是设计者的初衷。
https://www.zhihu.com/question/54513728
6、SAME和VALID
https://blog.csdn.net/wuzqchom/article/details/74785643
根据索引,得到新的tensor
https://blog.csdn.net/orangefly0214/article/details/81634310
https://blog.csdn.net/liyaoqing/article/details/54842384
8、Tensorflow中Graph和Session的关系
https://blog.csdn.net/xg123321123/article/details/78017997
9、TF的数据读取方式
https://zhuanlan.zhihu.com/p/30751039
10、tf.scatter_nd
gather_nd的反操作
https://www.w3cschool.cn/tensorflow_python/tensorflow_python-led42j40.html
11、categorical_crossentropy VS. sparse_categorical_crossentropy的区别
https://www.cnblogs.com/shizhh/p/9662545.html
- 如果你的 targets 是 one-hot 编码,用 categorical_crossentropy
- one-hot 编码:[0, 0, 1], [1, 0, 0], [0, 1, 0]
- 数字编码:2, 0, 1
如果你的 tagets 是 数字编码 ,用 sparse_categorical_crossentropy
12、tf.layers.conv2d_transpose 反卷积
反卷积的过程
Step 1 扩充: 将 inputs 进行填充扩大。扩大的倍数与strides有关。扩大的方式是在元素之间插strides - 1 个 0
Step 2 卷积: 对扩充变大的矩阵,用大小为kernel_size卷积核做卷积操作,这样的卷积核有filters个,并且这里的步长为1(与参数strides无关,一定是1)
https://blog.csdn.net/weiwei9363/article/details/78954063
13、Embedding层的作用
https://fuhailin.github.io/Embedding/
14、eager模式:以动态图的方式运行,无需sess.run就能出结果
import tensorflow.contrib.eager as tfe
tfe.enable_eager_execution()
15、这位网友踩过的一些坑,马克一下
https://zhuanlan.zhihu.com/p/66434370
16、tf.control_dependencies()
此函数指定某些操作执行的依赖关系, 在执行完 a,b 操作之后,才能执行 c,d 操作。意思就是 c,d 操作依赖 a,b 操作
https://blog.csdn.net/huitailangyz/article/details/85015611
with tf.control_dependencies([a, b]):
c = ....
d = ...
17、tf.GraphKeys.UPDATE_OPS
tensorflow的计算图中内置的一个集合,其中会保存一些需要在训练操作之前完成的操作,并配合tf.control_dependencies
函数使用。
这偏博客举了一个bn的例子 https://blog.csdn.net/huitailangyz/article/details/85015611
tf的一些基本用法的更多相关文章
- 【TensorFlow】tf.nn.softmax_cross_entropy_with_logits的用法
在计算loss的时候,最常见的一句话就是 tf.nn.softmax_cross_entropy_with_logits ,那么它到底是怎么做的呢? 首先明确一点,loss是代价值,也就是我们要最小化 ...
- deep_learning_Function_tf.equal(tf.argmax(y, 1),tf.argmax(y_, 1))用法
[Tensorflow] tf.equal(tf.argmax(y, 1),tf.argmax(y_, 1))用法 作用:输出正确的预测结果利用tf.argmax()按行求出真实值y_.预测值y最大值 ...
- 【转载】 tf.split函数的用法
原文地址: https://blog.csdn.net/uestc_c2_403/article/details/73350457 由于tensorflow 版本更新问题 用法略有修改 ----- ...
- tf.nn.embedding_lookup()的用法
函数: tf.nn.embedding_lookup( params, ids, partition_strategy='mod', name=None, validate_indices=True, ...
- tensorflow 的tf.split函数的用法
将张量进行切分 tf.split( value, num_or_size_splits, axis=0, num=None, name='split' ) value: 待切分的张量 num_or_s ...
- tf.transpose函数的用法讲解
tf.transpose函数中文意思是转置,对于低维度的转置问题,很简单,不想讨论,直接转置就好(大家看下面文档,一看就懂). tf.transpose(a, perm=None, name='tra ...
- [TensorFlow] tf.nn.softmax_cross_entropy_with_logits的用法
在计算loss的时候,最常见的一句话就是tf.nn.softmax_cross_entropy_with_logits,那么它到底是怎么做的呢? 首先明确一点,loss是代价值,也就是我们要最小化的值 ...
- tf.nn.softmax_cross_entropy_with_logits的用法
http://blog.csdn.net/mao_xiao_feng/article/details/53382790 计算loss的时候,最常见的一句话就是tf.nn.softmax_cross_e ...
- tf.nn.in_top_k的用法
tf.nn.in_top_k组要是用于计算预测的结果和实际结果的是否相等,返回一个bool类型的张量,tf.nn.in_top_k(prediction, target, K):prediction就 ...
随机推荐
- 深度学习结合SLAM研究总结
博客转载自:https://blog.csdn.net/u010821666/article/details/78793225 原文标题:深度学习结合SLAM的研究思路/成果整理之 1. 深度学习跟S ...
- RSA加解密工具类RSAUtils.java,实现公钥加密私钥解密和私钥解密公钥解密
package com.geostar.gfstack.cas.util; import org.apache.commons.codec.binary.Base64; import javax.cr ...
- iPhone 系统刷机
1. 下载好固件(爱思 或者 pp助手) e.g. http://jailbreak.25pp.com/gujian/ 2. 将电脑与手机连接上,弹出iTunes软件即可 3. 长按手机电源键 关闭手 ...
- Vue js 的生命周期(看了就懂)
转自: https://blog.csdn.net/qq_24073885/article/details/60143856 用Vue框架,熟悉它的生命周期可以让开发更好的进行. 首先先看看官网的图, ...
- [Windows Server]Windows Server turn off screen auto-lock to fit scheduled tasks(Error Code :0x4F7) / 关闭Windows Server的自动锁定来解决计划任务0x4F7错误
1. 打开“运行”,输入“regedit” 并回车. 2. 找到以下注册表路径,将Attributes的值改为 2: (原为1 HKEY_LOCAL_MACHINE \SYSTEM \CurrentC ...
- MySQL架构备份之M-S-S级联备份
M--S1--S2 级联复制 master—>slave1—>slave2 master需要开启二进制日志 中间的slave1也需要打开二进制日志,但是它默认不把应用master的操作记录 ...
- jmeter笔记(7)--参数化--用户定义的变量
录制的脚本里面有很多的相同的数据的时候,比如服务器ip,端口号等,当更换服务器的时候,就需要手动的修改脚本里面对应的服务器ip和端口号,比较繁琐,jmeter里面有一个用户自定义变量能很好的解决这个问 ...
- gcc编译C源文件
gcc编译C程序的主要过程是:预处理---编译---汇编---连接,其中:(以名为hello.c的源文件为例) 预处理:对各种预处理指令(#开头,如#include,#define)进行处理,以及删除 ...
- 移动开发day1_过渡_2d转换_3d立体
今天是就业班开班的第一天,上完了一天的课,做点总结. 什么叫做移动web 专门在手机或者 平板电脑 浏览器网页 为什么要学习移动web 工资高 1. 人拥有的手机数 大于 电脑的个数 2. 微信 1. ...
- RabbitMQ 和 Kafka
============================RabbitMQ 术语============================RabbitMQ 有很多术语和Kafka不一样, 理解这些术语十分 ...