1.一般操作

***必知必会13条***

<1> all(): 查询所有结果

<2> filter(**kwargs): 它包含了与所给筛选条件相匹配的对象
models.Customer.objects.filter(id=1) >>> <QuerySet [<Customer: Costomer1>]> 不存在返回一个空的queryset,不会报错
models.Customer.objects.filter(**{"id":1,..}) 参数也可传字典形式
  ---也可传Q对象,后面Q对象介绍有
<3> get(**kwargs): 返回与所给筛选条件相匹配的对象,返回结果有且只有一个,如果符合筛选条件的对象超过一个或者没有都会抛出错误。
  models.Customer.objects.get(id=1) >>> <Customer: Costomer1> <4> exclude(**kwargs): 它包含了与所给筛选条件不匹配的对象
  models.Customer.objects.exclude(id=1) <5> values(*field): 返回一个ValueQuerySet——一个特殊的QuerySet,运行后得到的并不是一系列model的实例化对象,而是一个可迭代的字典序列
   models.Customer.objects.values("name","telephone_number")
   >>> <QuerySet [{'name': 'Costomer1', 'telephone_number': '18200395978'}, {'name': 'Costomer2', 'telephone_number': '18369852522'}]> <6> values_list(*field): 它与values()非常相似,它返回的是一个元组序列,values返回的是一个字典序列   
  models.Customer.objects.values_list("name","telephone_number")
    >>> <QuerySet [('Costomer1', '18200395978'), ('Costomer2', '18369852522')]> <7> order_by(*field): 对查询结果排序
  models.Customer.objects.all().order_by("id")
  >>> <QuerySet [<Customer: Costomer1>, <Customer: Costomer2>, <Customer: Costomer3>
  
<8> reverse(): 对查询结果反向排序,请注意reverse()通常只能在具有已定义顺序的QuerySet上调用(在model类的Meta中指定ordering或调用order_by()方法)。
  models.Customer.objects.all().order_by("id").reverse()
   >>> <QuerySet [<Customer: Costomer17>, <Customer: Costomer16>, <Customer: Costomer15> <9> distinct(): 从返回结果中剔除重复纪录(如果你查询跨越多个表,可能在计算QuerySet时得到重复的结果。此时可以使用distinct(),注意只有在PostgreSQL中支持按字段去重。) <10> count(): 返回数据库中匹配查询(QuerySet)的对象数量。 <11> first(): 返回第一条记录 <12> last(): 返回最后一条记录 <13> exists():如果QuerySet包含数据,就返回True,否则返回False

返回QuerySet对象的方法有

all()

filter()

exclude()

order_by()

reverse()

distinct()

特殊的QuerySet

values()       返回一个可迭代的字典序列

values_list() 返回一个可迭代的元祖序列

返回具体对象的

get()

first()

last()

返回布尔值的方法有:

exists()

返回数字的方法有

count()

单表查询之神奇的双下划线

models.Tb1.objects.filter(id__lt=10, id__gt=1)   # 获取id大于1 且 小于10的值

models.Tb1.objects.filter(id__in=[11, 22, 33])   # 获取id等于11、22、33的数据
models.Tb1.objects.exclude(id__in=[11, 22, 33]) # not in models.Tb1.objects.filter(name__contains="ven") # 获取name字段包含"ven"的
models.Tb1.objects.filter(name__icontains="ven") # icontains大小写不敏感 models.Tb1.objects.filter(id__range=[1, 3]) # id范围是1到3的,等价于SQL的bettwen and 类似的还有:startswith,istartswith, endswith, iendswith  date字段还可以:
models.Class.objects.filter(first_day__year=2017)

2.ForeignKey操作

正向查找

对象查找(跨表)

语法:  对象.关联字段.字段

示例:

book_obj = models.Book.objects.first()  # 第一本书对象
print(book_obj.publisher) # 得到这本书关联的出版社对象
print(book_obj.publisher.name) # 得到出版社对象的名称

字段查找(跨表)

语法: 关联字段__字段

示例:

print(models.Book.objects.values_list("publisher__name"))    ---"publisher__name" 外键名_字段名

反向操作

对象查找

语法:obj.表名_set

示例:

publisher_obj = models.Publisher.objects.first()  # 找到第一个出版社对象
books = publisher_obj.book_set.all() # 找到第一个出版社出版的所有书
titles = books.values_list("title") # 找到第一个出版社出版的所有书的书名

字段查找

语法: 表名__字段

示例:

titles = models.Publisher.objects.values_list("book__title")   ----"book__title":表名_字段名

3.ManyToManyField操作

class RelatedManager

"关联管理器"是在一对多或者多对多的关联上下文中使用的管理器。

它存在于下面两种情况:

  1. 外键关系的反向查询
  2. 多对多关联关系

简单来说就是当 点后面的对象 可能存在多个的时候就可以使用以下的方法。

操作方法

create()

创建一个新的对象,保存对象,并将它添加到关联对象集之中,返回新创建的对象。

>>> import datetime
>>> models.Author.objects.first().book_set.create(title="番茄物语", publish_date=datetime.date.today())

add()

把指定的model对象添加到关联对象集中。

添加对象

>>> author_objs = models.Author.objects.filter(id__lt=3)
>>> models.Book.objects.first().authors.add(*author_objs)

添加id

>>> models.Book.objects.first().authors.add(*[1, 2])

set()

更新model对象的关联对象。

>>> book_obj = models.Book.objects.first()
>>> book_obj.authors.set([2, 3])

remove()

从关联对象集中移除执行的model对象

>>> book_obj = models.Book.objects.first()
>>> book_obj.authors.remove(3)

clear()

从关联对象集中移除一切对象。

>>> book_obj = models.Book.objects.first()
>>> book_obj.authors.clear()

注意:

对于ForeignKey对象,clear()和remove()方法仅在null=True时存在。

举个例子:

ForeignKey字段没设置null=True时,

class Book(models.Model):
title = models.CharField(max_length=32)
publisher = models.ForeignKey(to=Publisher)

没有clear()和remove()方法:

>>> models.Publisher.objects.first().book_set.clear()
Traceback (most recent call last):
File "<input>", line 1, in <module>
AttributeError: 'RelatedManager' object has no attribute 'clear'

当ForeignKey字段设置null=True时,

class Book(models.Model):
name = models.CharField(max_length=32)
publisher = models.ForeignKey(to=Class, null=True)

此时就有clear()和remove()方法:

>>> models.Publisher.objects.first().book_set.clear()

注意:

  1. 对于所有类型的关联字段,add()、create()、remove()和clear(),set()都会马上更新数据库。换句话说,在关联的任何一端,都不需要再调用save()方法。

4.聚合查询和分组查询

聚合

aggregate()QuerySet 的一个终止子句,意思是说,它返回一个包含一些键值对的字典。

键的名称是聚合值的标识符,值是计算出来的聚合值。键的名称是按照字段和聚合函数的名称自动生成出来的。

用到的内置函数:

from django.db.models import Avg, Sum, Max, Min, Count

示例:

>>> from django.db.models import Avg, Sum, Max, Min, Count
>>> models.Book.objects.all().aggregate(Avg("price"))
{'price__avg': 13.233333}

如果你想要为聚合值指定一个名称,可以向聚合子句提供它。

>>> models.Book.objects.aggregate(average_price=Avg('price'))
{'average_price': 13.233333}

如果你希望生成不止一个聚合,你可以向aggregate()子句中添加另一个参数。所以,如果你也想知道所有图书价格的最大值和最小值,可以这样查询:

>>> models.Book.objects.all().aggregate(Avg("price"), Max("price"), Min("price"))
{'price__avg': 13.233333, 'price__max': Decimal('19.90'), 'price__min': Decimal('9.90')}

分组

我们在这里先复习一下SQL语句的分组。

假设现在有一张公司职员表:

我们使用原生SQL语句,按照部分分组求平均工资:

select dept,AVG(salary) from employee group by dept;

ORM查询:

from django.db.models import Avg
Employee.objects.values("dept").annotate(avg=Avg("salary").values(dept, "avg")

连表查询的分组:

SQL查询:

select dept.name,AVG(salary) from employee inner join dept on (employee.dept_id=dept.id) group by dept_id;

ORM查询:

from django.db.models import Avg
models.Dept.objects.annotate(avg=Avg("employee__salary")).values("name", "avg")

更多示例:

示例1:统计每一本书的作者个数

>>> book_list = models.Book.objects.all().annotate(author_num=Count("author"))
>>> for obj in book_list:
... print(obj.author_num)
...
2
1
1

示例2:统计出每个出版社买的最便宜的书的价格

>>> publisher_list = models.Publisher.objects.annotate(min_price=Min("book__price"))
>>> for obj in publisher_list:
... print(obj.min_price)
...
9.90
19.90

方法二:

>>> models.Book.objects.values("publisher__name").annotate(min_price=Min("price"))
<QuerySet [{'publisher__name': '沙河出版社', 'min_price': Decimal('9.90')}, {'publisher__name': '人民出版社', 'min_price': Decimal('19.90')}]>

示例3:统计不止一个作者的图书

>>> models.Book.objects.annotate(author_num=Count("author")).filter(author_num__gt=1)
<QuerySet [<Book: 番茄物语>]>

示例4:根据一本图书作者数量的多少对查询集 QuerySet进行排序

>>> models.Book.objects.annotate(author_num=Count("author")).order_by("author_num")
<QuerySet [<Book: 香蕉物语>, <Book: 橘子物语>, <Book: 番茄物语>]>

示例5:查询各个作者出的书的总价格

>>> models.Author.objects.annotate(sum_price=Sum("book__price")).values("name", "sum_price")
<QuerySet [{'name': '小精灵', 'sum_price': Decimal('9.90')}, {'name': '小仙女', 'sum_price': Decimal('29.80')}, {'name': '小魔女', 'sum_price': Decimal('9.90')}]>

5.F查询和Q查询

F查询

在上面所有的例子中,我们构造的过滤器都只是将字段值与某个常量做比较。如果我们要对两个字段的值做比较,那该怎么做呢?

Django 提供 F() 来做这样的比较。F() 的实例可以在查询中引用字段,来比较同一个 model 实例中两个不同字段的值。

示例1:

查询评论数大于收藏数的书籍

from django.db.models import F
models.Book.objects.filter(commnet_num__gt=F('keep_num'))

Django 支持 F() 对象之间以及 F() 对象和常数之间的加减乘除和取模的操作。

models.Book.objects.filter(commnet_num__lt=F('keep_num')*2)

修改操作也可以使用F函数,比如将每一本书的价格提高30元

models.Book.objects.all().update(price=F("price")+30)

引申:

如果要修改char字段咋办?

如:把所有书名后面加上(第一版)

>>> from django.db.models.functions import Concat
>>> from django.db.models import Value
>>> models.Book.objects.all().update(title=Concat(F("title"), Value("("), Value("第一版"), Value(")")))

Q查询

filter() 等方法中的关键字参数查询都是一起进行“AND” 的。 如果你需要执行更复杂的查询(例如OR语句),你可以使用Q对象

示例1:

查询作者名是小仙女或小魔女的

models.Book.objects.filter(Q(authors__name="小仙女")|Q(authors__name="小魔女"))

你可以组合& 和|  操作符以及使用括号进行分组来编写任意复杂的Q 对象。同时,Q 对象可以使用~ 操作符取反,这允许组合正常的查询和取反(NOT) 查询。

示例:查询作者名字是小仙女并且不是2018年出版的书的书名。

>>> models.Book.objects.filter(Q(author__name="小仙女") & ~Q(publish_date__year=2018)).values_list("title")
<QuerySet [('番茄物语',)]>

查询函数可以混合使用Q 对象和关键字参数。所有提供给查询函数的参数(关键字参数或Q 对象)都将"AND”在一起。但是,如果出现Q 对象,它必须位于所有关键字参数的前面。

例如:查询出版年份是2017或2018,书名中带物语的所有书。

>>> models.Book.objects.filter(Q(publish_date__year=2018) | Q(publish_date__year=2017), title__icontains="物语")
<QuerySet [<Book: 番茄物语>, <Book: 香蕉物语>, <Book: 橘子物语>]>

6.事务

import os

if __name__ == '__main__':
os.environ.setdefault("DJANGO_SETTINGS_MODULE", "BMS.settings")
import django
django.setup() import datetime
from app01 import models try:
from django.db import transaction
with transaction.atomic():
new_publisher = models.Publisher.objects.create(name="火星出版社")
models.Book.objects.create(title="橘子物语", publish_date=datetime.date.today(), publisher_id=10) # 指定一个不存在的出版社id
except Exception as e:
print(str(e))

7.其他鲜为人知的操作

Django ORM执行原生SQL

 # extra
# 在QuerySet的基础上继续执行子语句
# extra(self, select=None, where=None, params=None, tables=None, order_by=None, select_params=None) # select和select_params是一组,where和params是一组,tables用来设置from哪个表
# Entry.objects.extra(select={'new_id': "select col from sometable where othercol > %s"}, select_params=(1,))
# Entry.objects.extra(where=['headline=%s'], params=['Lennon'])
# Entry.objects.extra(where=["foo='a' OR bar = 'a'", "baz = 'a'"])
# Entry.objects.extra(select={'new_id': "select id from tb where id > %s"}, select_params=(1,), order_by=['-nid']) 举个例子:
models.UserInfo.objects.extra(
select={'newid':'select count(1) from app01_usertype where id>%s'},
select_params=[1,],
where = ['age>%s'],
params=[18,],
order_by=['-age'],
tables=['app01_usertype']
)
"""
select
app01_userinfo.id,
(select count(1) from app01_usertype where id>1) as newid
from app01_userinfo,app01_usertype
where
app01_userinfo.age > 18
order by
app01_userinfo.age desc
""" # 执行原生SQL
# 更高灵活度的方式执行原生SQL语句
# from django.db import connection, connections
# cursor = connection.cursor() # cursor = connections['default'].cursor()
# cursor.execute("""SELECT * from auth_user where id = %s""", [1])
# row = cursor.fetchone()

QuerySet方法大全

def all(self)
# 获取所有的数据对象 def filter(self, *args, **kwargs)
# 条件查询
# 条件可以是:参数,字典,Q def get_字段_display()
  #表存在字段gender=Models.Customer.InteherField(verbosename="性别",choices=[(1="男"),(2,"女")]
  想直接查询出某条数据的性别:
    models.Customer.Objects.all().first().gender ==> "1"
    models.Customer.Objects.all().first().get_gender_display() ==>"男" def exclude(self, *args, **kwargs)
# 条件查询
# 条件可以是:参数,字典,Q def select_related(self, *fields)
性能相关:表之间进行join连表操作,一次性获取关联的数据。 总结:
1. select_related主要针一对一和多对一关系进行优化。
2. select_related使用SQL的JOIN语句进行优化,通过减少SQL查询的次数来进行优化、提高性能。 def prefetch_related(self, *lookups)
性能相关:多表连表操作时速度会慢,使用其执行多次SQL查询在Python代码中实现连表操作。 总结:
1. 对于多对多字段(ManyToManyField)和一对多字段,可以使用prefetch_related()来进行优化。
2. prefetch_related()的优化方式是分别查询每个表,然后用Python处理他们之间的关系。 def annotate(self, *args, **kwargs)
# 用于实现聚合group by查询 from django.db.models import Count, Avg, Max, Min, Sum v = models.UserInfo.objects.values('u_id').annotate(uid=Count('u_id'))
# SELECT u_id, COUNT(ui) AS `uid` FROM UserInfo GROUP BY u_id v = models.UserInfo.objects.values('u_id').annotate(uid=Count('u_id')).filter(uid__gt=1)
# SELECT u_id, COUNT(ui_id) AS `uid` FROM UserInfo GROUP BY u_id having count(u_id) > 1 v = models.UserInfo.objects.values('u_id').annotate(uid=Count('u_id',distinct=True)).filter(uid__gt=1)
# SELECT u_id, COUNT( DISTINCT ui_id) AS `uid` FROM UserInfo GROUP BY u_id having count(u_id) > 1 def distinct(self, *field_names)
# 用于distinct去重
models.UserInfo.objects.values('nid').distinct()
# select distinct nid from userinfo 注:只有在PostgreSQL中才能使用distinct进行去重 def order_by(self, *field_names)
# 用于排序
models.UserInfo.objects.all().order_by('-id','age') def extra(self, select=None, where=None, params=None, tables=None, order_by=None, select_params=None)
# 构造额外的查询条件或者映射,如:子查询 Entry.objects.extra(select={'new_id': "select col from sometable where othercol > %s"}, select_params=(1,))
Entry.objects.extra(where=['headline=%s'], params=['Lennon'])
Entry.objects.extra(where=["foo='a' OR bar = 'a'", "baz = 'a'"])
Entry.objects.extra(select={'new_id': "select id from tb where id > %s"}, select_params=(1,), order_by=['-nid']) def reverse(self):
# 倒序
models.UserInfo.objects.all().order_by('-nid').reverse()
# 注:如果存在order_by,reverse则是倒序,如果多个排序则一一倒序 def defer(self, *fields):
models.UserInfo.objects.defer('username','id')

models.UserInfo.objects.filter(...).defer('username','id')
#映射中排除某列数据 def only(self, *fields):
#仅取某个表中的数据
models.UserInfo.objects.only('username','id')

models.UserInfo.objects.filter(...).only('username','id') def using(self, alias):
指定使用的数据库,参数为别名(setting中的设置) ##################################################
# PUBLIC METHODS THAT RETURN A QUERYSET SUBCLASS #
################################################## def raw(self, raw_query, params=None, translations=None, using=None):
# 执行原生SQL
models.UserInfo.objects.raw('select * from userinfo') # 如果SQL是其他表时,必须将名字设置为当前UserInfo对象的主键列名
models.UserInfo.objects.raw('select id as nid from 其他表') # 为原生SQL设置参数
models.UserInfo.objects.raw('select id as nid from userinfo where nid>%s', params=[12,]) # 将获取的到列名转换为指定列名
name_map = {'first': 'first_name', 'last': 'last_name', 'bd': 'birth_date', 'pk': 'id'}
Person.objects.raw('SELECT * FROM some_other_table', translations=name_map) # 指定数据库
models.UserInfo.objects.raw('select * from userinfo', using="default") ################### 原生SQL ###################
from django.db import connection, connections
cursor = connection.cursor() # cursor = connections['default'].cursor()
cursor.execute("""SELECT * from auth_user where id = %s""", [1])
row = cursor.fetchone() # fetchall()/fetchmany(..) def values(self, *fields):
# 获取每行数据为字典格式 def values_list(self, *fields, **kwargs):
# 获取每行数据为元祖 def dates(self, field_name, kind, order='ASC'):
# 根据时间进行某一部分进行去重查找并截取指定内容
# kind只能是:"year"(年), "month"(年-月), "day"(年-月-日)
# order只能是:"ASC" "DESC"
# 并获取转换后的时间
- year : 年-01-01
- month: 年-月-01
- day : 年-月-日 models.DatePlus.objects.dates('ctime','day','DESC') def datetimes(self, field_name, kind, order='ASC', tzinfo=None):
# 根据时间进行某一部分进行去重查找并截取指定内容,将时间转换为指定时区时间
# kind只能是 "year", "month", "day", "hour", "minute", "second"
# order只能是:"ASC" "DESC"
# tzinfo时区对象
models.DDD.objects.datetimes('ctime','hour',tzinfo=pytz.UTC)
models.DDD.objects.datetimes('ctime','hour',tzinfo=pytz.timezone('Asia/Shanghai')) """
pip3 install pytz
import pytz
pytz.all_timezones
pytz.timezone(‘Asia/Shanghai’)
""" def none(self):
# 空QuerySet对象 ####################################
# METHODS THAT DO DATABASE QUERIES #
#################################### def aggregate(self, *args, **kwargs):
# 聚合函数,获取字典类型聚合结果
from django.db.models import Count, Avg, Max, Min, Sum
result = models.UserInfo.objects.aggregate(k=Count('u_id', distinct=True), n=Count('nid'))
===> {'k': 3, 'n': 4} def count(self):
# 获取个数 def get(self, *args, **kwargs):
# 获取单个对象 def create(self, **kwargs):
# 创建对象 def bulk_create(self, objs, batch_size=None):
# 批量插入
# batch_size表示一次插入的个数
objs = [
models.DDD(name='r11'),
models.DDD(name='r22')
]
models.DDD.objects.bulk_create(objs, 10) def get_or_create(self, defaults=None, **kwargs):
# 如果存在,则获取,否则,创建
# defaults 指定创建时,其他字段的值
obj, created = models.UserInfo.objects.get_or_create(username='root1', defaults={'email': '1111111','u_id': 2, 't_id': 2}) def update_or_create(self, defaults=None, **kwargs):
# 如果存在,则更新,否则,创建
# defaults 指定创建时或更新时的其他字段
obj, created = models.UserInfo.objects.update_or_create(username='root1', defaults={'email': '1111111','u_id': 2, 't_id': 1}) def first(self):
# 获取第一个 def last(self):
# 获取最后一个 def in_bulk(self, id_list=None):
# 根据主键ID进行查找
id_list = [11,21,31]
models.DDD.objects.in_bulk(id_list) def delete(self):
# 删除 def update(self, **kwargs):
# 更新 def exists(self):
# 是否有结果

8.Django终端打印SQL语句

在Django项目的settings.py文件中,在最后复制粘贴如下代码:

LOGGING = {
'version': 1,
'disable_existing_loggers': False,
'handlers': {
'console':{
'level':'DEBUG',
'class':'logging.StreamHandler',
},
},
'loggers': {
'django.db.backends': {
'handlers': ['console'],
'propagate': True,
'level':'DEBUG',
},
}
}

即为你的Django项目配置上一个名为django.db.backends的logger实例即可查看翻译后的SQL语句。

9.在Python脚本中调用Django环境

import os

if __name__ == '__main__':
os.environ.setdefault("DJANGO_SETTINGS_MODULE", "BMS.settings")
import django
django.setup() from app01 import models books = models.Book.objects.all()
print(books)

Django之Orm的各种操作的更多相关文章

  1. Django的ORM常用查询操作总结(Django编程-3)

    Django的ORM常用查询操作总结(Django编程-3) 示例:一个Student model: class Student(models.Model): name=models.CharFiel ...

  2. Django 的ORM 表间操作

    Django之ORM表间操作   之前完成了简单的数据库数据增加操作.这次学习更多的表间操作. 单表操作 增加 方式一 b = Book(title="Python基础", pub ...

  3. python——Django(ORM连表操作)

    千呼万唤始出来~~~当当当,终于系统讲了django的ORM操作啦!!!这里记录的是django操作数据库表一对多.多对多的表创建及操作.对于操作,我们只记录连表相关的内容,介绍增加数据和查找数据,因 ...

  4. Django之ORM跨表操作

    Django之ORM表查询及添加记录 一.创建表 - 书籍模型: 书籍有书名和出版日期,一本书可能会有多个作者,一个作者也可以写多本书,所以作者和书籍的关系就是多对多的关联关系(many-to-man ...

  5. Django的ORM那些相关操作

    一般操作 看专业的官网文档,做专业的程序员! 必知必会13条 <> all(): 查询所有结果 <> filter(**kwargs): 它包含了与所给筛选条件相匹配的对象 & ...

  6. Django之ORM那些相关操作

    一般操作 看专业的官网文档,做专业的程序员! 必知必会13条 <1> all(): 查询所有结果 <2> filter(**kwargs): 它包含了与所给筛选条件相匹配的对象 ...

  7. Django之ORM其他骚操作

    Django ORM执行原生SQL # extra # 在QuerySet的基础上继续执行子语句 # extra(self, select=None, where=None, params=None, ...

  8. Django之ORM其他骚操作 执行原生SQl

      Django ORM执行原生SQL # extra # 在QuerySet的基础上继续执行子语句 # extra(self, select=None, where=None, params=Non ...

  9. Django(ORM单表操作)

    默认使用sqllite数据库 修改为mysql数据库 创建数据库 在app models中编写创建数据库类 from django.db import models class Book(models ...

随机推荐

  1. 转载泡泡机器人——IMU预积分总结与公式推导1

    IMU预积分技术最早由T Lupton于12年提出[1],C Forster于15年[2][3][4]将其进一步拓展到李代数上,形成了一套优雅的理论体系.Forster将IMU预积分在开源因子图优化库 ...

  2. python3基本数据类型

    python3的基本数据类型: Number(数字).String(字符串).List(列表).Tuple(元组).Set(集合).Dictionary(字典) 不可变数据类型(3 个):Number ...

  3. memcache+tp3.2实现消息队列

    ){)){ ){));} $this->unLock();$this->resetSide('A');$this->resetSide('B');return true;} /* * ...

  4. Leetcode 4

    Array Easy 1. 268. Missing Number 先对数组求和,用 0 ~ n本该有的和减去当前sum得到缺失的数字. class Solution { public int mis ...

  5. kafka的安装以及基本用法

    kafka的安装 kafka依赖于ZooKeeper,所以在运行kafka之前需要先部署ZooKeeper集群,ZooKeeper集群部署方式分为两种,一种是单独部署(推荐),另外一种是使用kafka ...

  6. Excel中最精确的计算年龄的公式

    身份证算年龄 假设A1是身份证号所在单元格 =IF(MONTH(NOW())<INT(MID(A1,11,2)),INT(YEAR(NOW())-INT(MID(A1,7,4)))-1,IF(M ...

  7. P1451 求细胞数量

    题目描述 一矩形阵列由数字0到9组成,数字1到9代表细胞,细胞的定义为沿细胞数字上下左右若还是细胞数字则为同一细胞,求给定矩形阵列的细胞个数.(1<=m,n<=100)? 输入输出格式 输 ...

  8. Java 8 特性 —— 默认方法和静态方法

    Java 8 新增了接口的默认方法.简单说,默认方法就是接口可以有实现方法,而且不需要实现类去实现其方法.我们只需在方法名前面加个 default 关键字即可实现默认方法. 为什么要有这个特性?之前的 ...

  9. ORCAL Merge into用法总结

    简单的说就是,判断表中有没有符合on()条件中的数据,有了就更新数据,没有就插入数据. 有一个表T,有两个字段a.b,我们想在表T中做Insert/Update,如果条件满足,则更新T中b的值,否则在 ...

  10. golang中使用mysql数据库

    安装 安装mysql驱动 go get github.com/go-sql-driver/mysql 安装sqlx驱动 go get github.com/jmoiron/sqlx 一.插入数据库 p ...