先解释一个单词 blur:使...模糊不清

滤波与模糊

  • 滤波和模糊都属于卷积,不同的滤波方法之间只是卷积核不同(对线性滤波而言)
  • 低通滤波器是模糊,高通滤波器是锐化

低通滤波器允许低频信号通过,在图像中边缘和噪点都相当于高频部分,所以低通滤波器用于去除噪点、平滑和模糊图像。高通滤波器则反之,用来增强图像边缘,进行锐化处理。

常见噪声有:椒盐噪声和高斯噪声,椒盐噪声可以理解为斑点,随机出现在图像中的黑点或白点;高斯噪声可以理解为拍摄图片时由于光照等原因造成的噪声。

一、均值滤波

均值滤波是一种最简单的滤波处理,它取的是卷积核区域内元素的均值,用 cv2.blur() 实现,如3 x 3的卷积核:

import cv2
import numpy as np
import matplotlib.pyplot as plt
img = cv2.imread('lena.jpg')
blur = cv2.blur(img, (3, 3)) # 均值模糊
cv2.imshow('blur', blur)
cv2.waitKey(0)

二、方框滤波

方框滤波和均值滤波很像,如3 x 3的滤波核如下:

用 cv2.boxFilter() 函数实现,当可选参数 normalize 为True的时候,方框滤波就是均值滤波,上式中的 a = 1/9;normalize为False的时候,a=1,相当于求区域内的像素和

# 前面的均值滤波也可以用方框滤波实现:normalize=True
# output image depth (-1 to use src.depth())
# -1 表示输出图片深度采用源图片深度
blur = cv2.boxFilter(img, -1, (3, 3), normalize=False)
cv2.imshow('blur2', blur)
cv2.waitKey(0)

三、高斯滤波

前面两种滤波方式,卷积核内的每个值都一样,也就是说图像区域内每个像素的权重也是一样。

高斯滤波的卷积核权重并不相同:中间像素点权重最高,越远离中心的像素权重越小。

显然这种处理元素间权值的方式,更加合理一些。图像是2维的,我们需要使用2维的高斯函数,比如OpenCV中默认的3 x 3的高斯卷积核

OpenCV中对应函数为 cv2.GaussianBlur(src,ksize,sigmaX)

img = cv2.imread('gaussian_noise.bmp')

# 均值滤波 vs 高斯滤波

blur = cv2.blur(img, (5, 5))  # 均值滤波
gaussian = cv2.GaussianBlur(img, (5, 5), 1) # 高斯滤波 titles = ['Original', 'blur', 'Gaussian_Blur']
images = [img, blur, gaussian] # 使用Matplotlib显示
# 一行三列图
for i in range(3):
plt.subplot(1, 3, i + 1)
plt.imshow(images[i])
plt.title(titles[i], fontsize=8)
plt.xticks([]), plt.yticks([])
plt.show()

参数3:σx值越大,模糊效果越明显。高斯滤波相比均值滤波效率要慢,但可以有效消除高斯噪声,能保留更多图像细节,所以经常被成为最有用的滤波器

四、中值滤波

中值又叫中位数,是所有数排序后取中间的值。中值滤波就是用区域内的中值来代替本像素值,所以那些孤立的斑点。如0或255很容易消除。适用于去除椒盐噪声和斑点噪声。中值是一种非线性操作,效率相比前面集中滤波器要慢。

img = cv2.imread('salt_noise.bmp', 0)

# 均值滤波 vs 中值滤波
blur = cv2.blur(img, (5, 5)) # 均值滤波
median = cv2.medianBlur(img, 5) # 中值滤波 titles = ['Original', 'blur', 'medianBlur']
images = [img, blur, median] # 使用Matplotlib显示
# 一行三列图
for i in range(3):
plt.subplot(1, 3, i + 1)
plt.imshow(images[i])
plt.title(titles[i], fontsize=8)
plt.xticks([]), plt.yticks([])
plt.show()

比如这张斑点图,用中值滤波显然更好。

五、双边滤波

模糊操作基本都是损失图像细节信息,尤其前面介绍的线性滤波器,图像的边缘信息很难保留下来。

然而,边缘(edge)信息是图像中很重要的一个特征,因此我们采用双边滤波。使用 cv2.bilateralFilter()

img = cv2.imread('lena.jpg')

# 双边滤波 vs 高斯滤波
bilateral = cv2.bilateralFilter(img, 9, 75, 75) # 双边滤波
gaussian = cv2.GaussianBlur(img, (5, 5), 0) # 高斯滤波 titles = ['Original', 'bilateralFilter', 'GaussianBlur']
images = [img, bilateral, gaussian] # 使用Matplotlib显示
# 一行三列图
for i in range(3):
plt.subplot(1, 3, i + 1)
plt.imshow(images[i])
plt.title(titles[i], fontsize=8)
plt.xticks([]), plt.yticks([])
plt.show()

双边滤波明显保留了更多边缘信息。

小结

  • 在不知道用什么滤波器好的时候,优先使用高斯滤波器cv2.GaussianBlur(),然后均值滤波cv2.blur()
  • 斑点和椒盐噪声优先使用中值滤波cv2.medianBlur()
  • 要去除噪点的同时尽可能保留更多的边缘信息,使用双边滤波cv2.bilateralFilter()
  • 线性滤波方式:均值滤波、方框滤波、高斯滤波(速度相对快)
  • 非线性滤波方式:中值滤波、双边滤波(速度相对慢)

OpenCV-Python教程9-平滑图像的更多相关文章

  1. 【OpenCV入门教程之三】 图像的载入,显示和输出 一站式完全解析(转)

    本系列文章由@浅墨_毛星云 出品,转载请注明出处. 文章链接:http://blog.csdn.net/poem_qianmo/article/details/20537737 作者:毛星云(浅墨)  ...

  2. OpenCV Python教程(3、直方图的计算与显示)

    转载请详细注明原作者及出处,谢谢! 本篇文章介绍如何用OpenCV Python来计算直方图,并简略介绍用NumPy和Matplotlib计算和绘制直方图 直方图的背景知识.用途什么的就直接略过去了. ...

  3. OpenCV Python教程(1、图像的载入、显示和保存)

    原文地址:http://blog.csdn.net/sunny2038/article/details/9057415 转载请详细注明原作者及出处,谢谢! 本文是OpenCV  2 Computer ...

  4. 系列文章 -- OpenCV入门教程

     <OpenCV3编程入门>内容简介&勘误&配套源代码下载 [OpenCV入门教程之十八]OpenCV仿射变换 & SURF特征点描述合辑 [OpenCV入门教程之 ...

  5. 【OpenCV新手教程之十三】OpenCV图像金字塔:高斯金字塔、拉普拉斯金字塔与图片尺寸缩放

    本系列文章由@浅墨_毛星云 出品,转载请注明出处. 文章链接:http://blog.csdn.net/poem_qianmo/article/details/26157633 作者:毛星云(浅墨) ...

  6. Python 图像处理 OpenCV (14):图像金字塔

    前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...

  7. opencv ,亮度调整【【OpenCV入门教程之六】 创建Trackbar & 图像对比度、亮度值调整

    http://blog.csdn.net/poem_qianmo/article/details/21479533 [OpenCV入门教程之六] 创建Trackbar & 图像对比度.亮度值调 ...

  8. Python 图像处理 OpenCV (4):图像算数运算以及修改颜色空间

    前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...

  9. Python 图像处理 OpenCV (5):图像的几何变换

    前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...

  10. Python 图像处理 OpenCV (6):图像的阈值处理

    前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...

随机推荐

  1. centos7只rsync+inotify

    环境: 操作系统:centos7.4 192.168.1.238 客户端 192.168.1.239 服务端 环境准备: 1.安装以下安装包lrzsz是xshell上传下载的安装包,可以忽略. yum ...

  2. Nginx-Tomcat搭建负载均衡(转载)

    一.   工具 nginx-1.8.0 apache-tomcat-6.0.33 二.    目标 实现高性能负载均衡的Tomcat集群: 三.    步骤 1.首先下载Nginx,要下载稳定版: 2 ...

  3. Spring MVC 使用介绍(六)—— 注解式控制器(二):请求映射与参数绑定

    一.概述 注解式控制器支持: 请求的映射和限定 参数的自动绑定 参数的注解绑定 二.请求的映射和限定 http请求信息包含六部分信息: ①请求方法: ②URL: ③协议及版本: ④请求头信息(包括Co ...

  4. 【Android O】 Service AAA does not have a SELinux domain defined

    在init.AAA.rc里面添加了一个脚本启动的服务: service AAA /vendor/bin/sh /vendor/etc/AAA_spec.sh user root group root ...

  5. #!/usr/bin/python3的作用 解决vscode ImportError: No module named xxxx

    在 Python 脚本的第一行经常见到这样的注释: #!/usr/bin/env python3 或者 #!/usr/bin/python3 含义 在脚本中, 第一行以 #! 开头的代码, 在计算机行 ...

  6. Git让你从入门到精通,看这一篇就够了

    简介 Git 是什么? Git 是一个开源的分布式版本控制系统. 什么是版本控制? 版本控制是一种记录一个或若干文件内容变化,以便将来查阅特定版本修订情况的系统. 什么是分布式版本控制系统? 介绍分布 ...

  7. AttributeError type object 'deprecated' has no attribute 'ROCKY'

    AttributeError type object 'deprecated' has no attribute 'ROCKY' 在使用kolla安装docker的时候遇到了AttributeErro ...

  8. BM算法学习笔记

    一种nb算法,可以求出数列的递推式. 具体过程是这样的. 我们先假设它有一个递推式,然后按位去算他的值. ;j<now.size();++j)(delta[i]+=1ll*now[j]*f[i- ...

  9. 使用FFMPEG进行一些视频处理(C#)视频合并、转码、获取时长

    FFMPEG的强大无需多说,举几个用到的功能,直接贴代码了 还有更多命令用到时搜索即可 视频转码 ) { var args = "-y -i {0} -vcodec copy {1}&quo ...

  10. [物理学与PDEs]第4章习题4 一维理想反应流体力学方程组的守恒律形式及其 R.H. 条件

    写出在忽略粘性与热传导性, 即设 $\mu=\mu'=\kappa=0$ 的情况, 在 Euler 坐标系下具守恒律形式的一维反应流动力学方程组. 由此求出在解的强间断线上应满足的 R.H. 条件 ( ...