Sasha and Interesting Fact from Graph Theory

n 个 点形成 m 个有标号森林的方案数为 F(n, m) = m * n ^ {n - 1 - m}

然后就没啥难度了。。。

#include<bits/stdc++.h>
#define LL long long
#define LD long double
#define ull unsigned long long
#define fi first
#define se second
#define mk make_pair
#define PLL pair<LL, LL>
#define PLI pair<LL, int>
#define PII pair<int, int>
#define SZ(x) ((int)x.size())
#define ALL(x) (x).begin(), (x).end()
#define fio ios::sync_with_stdio(false); cin.tie(0); using namespace std; const int N = 1e6 + ;
const int inf = 0x3f3f3f3f;
const LL INF = 0x3f3f3f3f3f3f3f3f;
const int mod = 1e9 + ;
const double eps = 1e-;
const double PI = acos(-); template<class T, class S> inline void add(T& a, S b) {a += b; if(a >= mod) a -= mod;}
template<class T, class S> inline void sub(T& a, S b) {a -= b; if(a < ) a += mod;}
template<class T, class S> inline bool chkmax(T& a, S b) {return a < b ? a = b, true : false;}
template<class T, class S> inline bool chkmin(T& a, S b) {return a > b ? a = b, true : false;} int power(int a, int b) {
int ans = ;
while(b) {
if(b & ) ans = 1LL * ans * a % mod;
a = 1LL * a * a % mod; b >>= ;
}
return ans;
} int F[N], Finv[N], inv[N];
int C(int n, int m) {
if(n < || n < m) return ;
return 1LL * F[n] * Finv[m] % mod * Finv[n - m] % mod;
} int n, m, a, b; int main() {
inv[] = F[] = Finv[] = ;
for(int i = ; i < N; i++) inv[i] = 1LL * (mod - mod / i) * inv[mod % i] % mod;
for(int i = ; i < N; i++) F[i] = 1LL * F[i - ] * i % mod;
for(int i = ; i < N; i++) Finv[i] = 1LL * Finv[i - ] * inv[i] % mod;
scanf("%d%d%d%d", &n, &m, &a, &b);
int ans = ;
for(int i = ; i <= n; i++) {
if(i < n) add(ans, 1LL * C(n - , i - ) * F[i - ] % mod * C(m - , i - ) % mod * power(m, n - i) % mod * i % mod * power(n, n - i - ) % mod);
else add(ans, 1LL * F[i - ] * C(m - , i - ) % mod);
}
printf("%d\n", ans);
return ;
} /*
*/

Codeforces 1109D Sasha and Interesting Fact from Graph Theory (看题解) 组合数学的更多相关文章

  1. Codeforces 1109D. Sasha and Interesting Fact from Graph Theory

    Codeforces 1109D. Sasha and Interesting Fact from Graph Theory 解题思路: 这题我根本不会做,是周指导带飞我. 首先对于当前已经有 \(m ...

  2. Codeforces 1109D. Sasha and Interesting Fact from Graph Theory 排列组合,Prufer编码

    原文链接https://www.cnblogs.com/zhouzhendong/p/CF1109D.html 题意 所有边权都是 [1,m] 中的整数的所有 n 个点的树中,点 a 到点 b 的距离 ...

  3. CF1109D Sasha and Interesting Fact from Graph Theory

    CF1109D Sasha and Interesting Fact from Graph Theory 这个 \(D\) 题比赛切掉的人基本上是 \(C\) 题的 \(5,6\) 倍...果然数学计 ...

  4. Sasha and Interesting Fact from Graph Theory CodeForces - 1109D (图论,计数,Caylay定理)

    大意: 求a->b最短路长度为m的n节点树的个数, 边权全部不超过m 枚举$a$与$b$之间的边数, 再由拓展$Caylay$定理分配其余结点 拓展$Caylay$定理 $n$个有标号节点生成k ...

  5. Codeforces1113F. Sasha and Interesting Fact from Graph Theory(组合数学 计数 广义Cayley定理)

    题目链接:传送门 思路: 计数.树的结构和边权的计数可以分开讨论. ①假设从a到b的路径上有e条边,那么路径上就有e-1个点.构造这条路径上的点有$A_{n-2}^{e-1}$种方案: ②这条路径的权 ...

  6. CF1109DSasha and Interesting Fact from Graph Theory(数数)

    题面 传送门 前置芝士 Prufer codes与Generalized Cayley's Formula 题解 不行了脑子已经咕咕了连这么简单的数数题都不会了-- 首先这两个特殊点到底是啥并没有影响 ...

  7. Codeforces 316E3 线段树 + 斐波那切数列 (看题解)

    最关键的一点就是 f[ 0 ] * a[ 0 ] + f[ 1 ] * a[ 1 ] + ... + f[ n - 1] * a[ n  - 1] f[ 1 ] * a[ 0 ] + f[ 2 ] * ...

  8. Codeforces Round #485 (Div. 2) F. AND Graph

    Codeforces Round #485 (Div. 2) F. AND Graph 题目连接: http://codeforces.com/contest/987/problem/F Descri ...

  9. Codeforces 703D Mishka and Interesting sum 离线+树状数组

    链接 Codeforces 703D Mishka and Interesting sum 题意 求区间内数字出现次数为偶数的数的异或和 思路 区间内直接异或的话得到的是出现次数为奇数的异或和,要得到 ...

随机推荐

  1. 建立ftp服务器的网址

    https://jingyan.baidu.com/article/574c5219d466c36c8d9dc138.html

  2. GOOGLE RANKBRAIN 完整指南

    [译]GOOGLE RANKBRAIN 完整指南 ( 2018 最新版 ) 2018.01.29    来源  http://www.zhidaow.com/post/google-rankbrain ...

  3. MySQL防止库存超卖方法总结

    订单超卖问题是涉及到库存项目的重中之重,这里我总结一下常用的方法 1.简单处理[update & select 合并](乐观锁) beginTranse(开启事务)$num = 1; try{ ...

  4. 全基因组关联分析(GWAS)扫不出信号怎么办(文献解读)

    假如你的GWAS结果出现如下图的时候,怎么办呢?GWAS没有如预期般的扫出完美的显著信号,也就没法继续发挥后续研究的套路了. 最近,nature发表了一篇文献“Common genetic varia ...

  5. PTA数组作业一查找整数

    代码 #include<stdio.h> int main(void){ int a[20],n,flag=0,x; int i; scanf("%d%d",& ...

  6. I/O模型

    目录: IO模型 阻塞IO 非阻塞IO IO多路复用 异步IO 总结: 1.阻塞IO模型 多线程 多进程 线程池 进程池 全是阻塞IO 2.非阻塞IO 协程是一种非阻塞IO 1.setblocking ...

  7. 第十九节: 结合【表达式目录树】来封装EF的BaseDal层的方法

    一. 简介 该章节,可以说是一个简单轻松的章节,只要你对Expression表达式树.EF的基本使用.泛型有所了解,那么本章节实质上就是一个非常简单的封装章节,便于我们快捷开发. PS:在该章节对于E ...

  8. 删除对象的某个属性 delete

    有时候我们可能会遇到需要删除一个对象的某个属性的这种情况,保留剩下的,不想遍历,那我们就可以使用delete操作符, let obj = { a: 1, b: 2, c: 3 } delete obj ...

  9. 支持动态调频_配置AXP228电源管理_4核8核兼容设计_iTOP-4418/6818开发板

    iTOP-4418/6818开发板 支持动态调频,AXP228电源管理, 系统支持:Android4.4/5.1.1.Linux3.4.39.QT2.2/4.7/5.7.Ubuntu12.04 内存: ...

  10. Java设计模式之装饰器模式

    1.装饰器模式的定义(保持接口,扩展功能) Decorate装饰器,顾名思义,就是动态的给一个对象添加一些额外的职责,就好比对房子进行装修一样. 2.装饰器模式的特征 具有一个装饰对象. 必须拥有与被 ...