UOJ#460. 新年的拯救计划 构造
原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ460.html
题解
本题的构造方法很多。这里只介绍一种。
首先,总边数为 $\frac{n(n-1)}2$,每一棵树需要 $n-1$ 条边,所以答案最多是 $\lfloor \frac n 2 \rfloor$ 。
然后我们来找到构造出 $\lfloor \frac n 2 \rfloor$ 。
这里我们只考虑 n 为偶数,因为如果 n 为奇数的话就只要在 n-1 的基础上随便连就好了。
考虑增量法。
假设当前加入的点为 n-1 和 n ,那么,首先我们在原来的 $\frac {n-2} 2 $ 个树中连上点 n-1 和 n,方法是对于第 $i$ 棵树,$2i-1$ 连 $n-1$, $2i$ 连 $n$;
接下来我们考虑搞一个新树。首先 $n-1$ 连 $n$ ,然后对于 $1$~$n-2$,偶数连 $n-1$,奇数连 $n$ 。
构造完毕。
代码
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
LL read(){
LL x=0;
char ch=getchar();
while (!isdigit(ch))
ch=getchar();
while (isdigit(ch))
x=(x<<1)+(x<<3)+(ch^48),ch=getchar();
return x;
}
const int N=2005;
int n;
vector <pair <int,int> > e[N];
int main(){
n=read();
for (int i=2;i<=n;i+=2){
int j=i-1;
e[i/2].push_back(make_pair(i,j));
for (int a=2;a<i;a+=2){
int b=a-1;
e[a/2].push_back(make_pair(a,i));
e[a/2].push_back(make_pair(b,j));
e[i/2].push_back(make_pair(a,j));
e[i/2].push_back(make_pair(b,i));
}
}
if (n&1)
for (int i=1;i<=n/2;i++)
e[i].push_back(make_pair(i*2,n));
printf("%d\n",n/2);
for (int i=1;i<=n/2;i++,puts(""))
for (auto p : e[i])
printf("%d %d ",p.first,p.second);
return 0;
}
UOJ#460. 新年的拯救计划 构造的更多相关文章
- UOJ #460 新年的拯救计划
清真的构造题 UOJ# 460 题意 求将$ n$个点的完全图划分成最多的生成树的数量,并输出一种构造方案 题解 首先一棵生成树有$ n-1$条边,而原完全图只有$\frac{n·(n-1)}{2}$ ...
- UOJ #460. 新年的拯救计划 神仙题+构造
对于这个神仙题,我还能说什么~ 第一个答案=$n/2$ 还是比较好猜的. 对于构造这个树,大概就是先从 $1$ 号节点向 $n/2$ 距离以内都连一条边,再在第 $n/2$ 个节点进行这个操作,然后从 ...
- 【UOJ#308】【UNR#2】UOJ拯救计划
[UOJ#308][UNR#2]UOJ拯救计划 题面 UOJ 题解 如果模数很奇怪,我们可以插值一下,设\(f[i]\)表示用了\(i\)种颜色的方案数. 然而模\(6\)这个东西很有意思,\(6=2 ...
- [UOJ#351]新年的叶子
[UOJ#351]新年的叶子 试题描述 躲过了AlphaGo 之后,你躲在 SingleDog 的长毛里,和它们一起来到了AlphaGo 的家.此时你们才突然发现,AlphaGo 的家居然是一个隐藏在 ...
- uoj308 【UNR #2】UOJ拯救计划
传送门:http://uoj.ac/problem/308 [题解] 考虑枚举用了$i$所学校,那么贡献为${k \choose i} * cnt * i!$ 意思是从$k$所选$i$所出来染色,$c ...
- 【UNR #2】UOJ拯救计划
UOJ小清新题表 题目内容 UOJ链接 题面太长了(其实是我懒得改LaTeX了) 一句话题意: 给出 \(n\) 个点和 \(m\) 条边,对其进行染色,共 \(k\) 种颜色,要求同一条边两点颜色不 ...
- [UOJ UNR#2 UOJ拯救计划]
来自FallDream的博客,未经允许,请勿转载,谢谢. 传送门 感觉这题有点神... 模数是6比较奇怪,考虑计算答案的式子. Ans=$\sum_{i=1}^{k} P(k,i)*ans(i)$ a ...
- A. 【UNR #2】UOJ拯救计划
题解: 感觉多了解一些npc问题是很有用的.. 就不会像我一样完全不考虑模数的性质 前面60分大概是送分 后面主要考虑一下%6带来的影响 平常都是那么大的模数,突然这么小??? 考虑正好使用k种颜色的 ...
- 2018.10.25 uoj#308. 【UNR #2】UOJ拯救计划(排列组合)
传送门 有一个显然的式子:Ans=∑A(n,i)∗用i种颜色的方案数Ans=\sum A(n,i)*用i种颜色的方案数Ans=∑A(n,i)∗用i种颜色的方案数 这个东西貌似是个NPCNPCNPC. ...
随机推荐
- zabbix误报交换机重启
交换机的sysUpTime是由一个32-bit的counter来计数的,单位是0.01秒,所以最大时间为496天,过了496天就溢出,变成0,然后又重新计算时间,所以zabbix误报. snmpwal ...
- Django 中使用kindeditor
KindEditor 是一套开源的在线HTML编辑器,主要用于让用户在网站上获得所见即所得编辑效果,开发人员可以用 KindEditor 把传统的多行文本输入框(textarea)替换为可视化的富文本 ...
- vue常用手册
1.搭建vue的开发环境: 1.必须要安装node.js 2.安装vue的脚手架工具 官方命令行工具 npm install --global vue-cli 3.新建项目 vue init webp ...
- 如何将JPG格式的图片转换成PNG格式
study from : https://jingyan.baidu.com/article/6079ad0e63a4fc28ff86db37.html
- PMP备考资料和备考经验分享(基于PMP第六版)
之前有不少小伙伴私信我说,你PMP考过了,有没有报班呢,有没有自己看的资料,有没有一些经验分享,今天在这里,就统一给大家分享一下,以便大家备考和学习PMP. 先说我自己的情况,我本身是从事项目管理的, ...
- elasticsearch简单实现
初次接触分布式是全文搜索引擎,之前都是spinx+coreseek,先简单实现初步了解先 官方文档:https://www.elastic.co/guide/cn/elasticsearch/guid ...
- Python系列之 - 异常处理
python提供的异常处理 BaseException 所有异常的基类 SystemExit 解释器请求退出 KeyboardInterrupt 用户中断执行(通常是输入^C) Exception 常 ...
- line-height与height
line-height是行高,height就是高,通常height是对于某个框架或者图片来弄的,line-height用于文字 如果要实际效果你可以写一段文字,分好几行,然后对它做line-heigh ...
- [再寄小读者之数学篇](2014-10-08 乘积型 Sobolev 不等式)
$$\bex n\geq 2, 1\leq p<n\ra \sen{f}_{L^\frac{np}{n-p}(\bbR^n)} \leq C\prod_{k=1}^n \sen{\p_k f}_ ...
- Jenkins 子业务日志拆分分析方法
需求 Jenkins日志打印内容很长,或者并发编译导致,日志内容不容易查看. 对于具体业务失败, 开发者希望看到具体业务自身的日志内容. 解法 tee 命令能够保证, shell命令执行的内容,即往控 ...