Pandas 基础(17) - to_datetime
这一节依然是关于时间的知识, 在平时的工作中, 有一个非常令我们恼火的就是时间的格式可以有很多种表达, 比如下面这张图, 我们看到同样是 2017年1月5日, 可以有很多种时间的格式, 我们需要先将格式统一才能进行下面的工作, Pandas 提供了这个函数 to_datetime().
下面通过一个例子来看下它的具体用法:
import pandas as pd
dates = ['2017-01-05', 'Jan 5, 2017', '01/05/2017', '2017.01.05', '2017/01/05','20170105']
pd.to_datetime(dates)
输出:
DatetimeIndex(['2017-01-05', '2017-01-05', '2017-01-05', '2017-01-05',
'2017-01-05', '2017-01-05'],
dtype='datetime64[ns]', freq=None)
来看下加上时间的效果:
dates = ['2017-01-05 2:30:00 PM', 'Jan 5, 2017 14:30:00', '01/05/2016', '2017.01.05', '2017/01/05','20170105']
pd.to_datetime(dates)
输出:
DatetimeIndex(['2017-01-05 14:30:00', '2017-01-05 14:30:00',
'2016-01-05 00:00:00', '2017-01-05 00:00:00',
'2017-01-05 00:00:00', '2017-01-05 00:00:00'],
dtype='datetime64[ns]', freq=None)
如果时间的 list 里有无法转换的字符呢?
dates = ['2017-01-05 2:30:00 PM', 'Jan 5, 2017 14:30:00', '01/05/2016', '2017.01.05', '2017/01/05','20170105', 'ABC']
pd.to_datetime(dates)
报错了:
TypeError Traceback (most recent call last)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/pandas/core/tools/datetimes.py in _convert_listlike(arg, box, format, name, tz)
376 try:
--> 377 values, tz = conversion.datetime_to_datetime64(arg)
378 return DatetimeIndex._simple_new(values, name=name, tz=tz)
pandas/_libs/tslibs/conversion.pyx in pandas._libs.tslibs.conversion.datetime_to_datetime64()
TypeError: Unrecognized value type: <class 'str'>
During handling of the above exception, another exception occurred:
这种情况下, 我们需要给 to_datetime() 函数加个参数:
dates = ['2017-01-05 2:30:00 PM', 'Jan 5, 2017 14:30:00', '01/05/2016', '2017.01.05', '2017/01/05','20170105', 'ABC']
pd.to_datetime(dates, errors='ignore')
输出:
array(['2017-01-05 2:30:00 PM', 'Jan 5, 2017 14:30:00', '01/05/2016',
'2017.01.05', '2017/01/05', '20170105', 'ABC'], dtype=object)
非时间字符被原样输出了, 还可以设置第二个参数 errors='coerce':
pd.to_datetime(dates, errors='coerce')
输出:
DatetimeIndex(['2017-01-05 14:30:00', '2017-01-05 14:30:00',
'2016-01-05 00:00:00', '2017-01-05 00:00:00',
'2017-01-05 00:00:00', '2017-01-05 00:00:00',
'NaT'],
dtype='datetime64[ns]', freq=None)
我们知道关于时间的格式, 美国跟欧洲的格式是不一样的, 如下图所示:
如果以欧洲的时间格式表示 2019年1月5日, 应该会写成这样:
pd.to_datetime('5/1/2019')
但是默认输出是按照美国的标准:
Timestamp('2019-05-01 00:00:00')
这时, 可以加一个参数指明第一个值为 day:
pd.to_datetime('5/1/2019', dayfirst=True)
输出:
Timestamp('2019-01-05 00:00:00')
我们通常会用斜线作为年月日的分隔线, 但是其实这个分隔符是可以用任意字符代替的, 比如 $, 比如 #, 因为 Pandas 提供了一个参数 format 可以用来定义时间的表达格式, 比如下面的例子:
pd.to_datetime('5$1$2019', format='%d$%m$%Y')
输出:
Timestamp('2019-01-05 00:00:00')
用 # 做分隔符的例子:
pd.to_datetime('5#1#2019', format='%d#%m#%Y')
输出:
Timestamp('2019-01-05 00:00:00')
格林威治时间是从1970年1月1日开始累计的秒数的总和.
我们可以通过下面这个网站获取时时的格林威治时间:
Epoch & Unix Timestamp Conversion Tools
可以用 to_datetime() 函数转换格林威治时间:
t = 1551966534
pd.to_datetime(t, unit='s')
输出:
Timestamp('2019-03-07 13:48:54')
以 list 的形式传参, 以得到 list 的时间格式:
t = 1551966534
dt = pd.to_datetime([t], unit='s')
dt
输出:
DatetimeIndex(['2019-03-07 13:48:54'], dtype='datetime64[ns]', freq=None)
通过 Pandas 的 view() 函数还可以将其再转换成格林威治时间:
dt.view('int64')
输出:
array([1551966534000000000])
以上, 就是关于 to_datetime() 函数的基本使用方法, enjoy~~~
Pandas 基础(17) - to_datetime的更多相关文章
- numpy&pandas基础
numpy基础 import numpy as np 定义array In [156]: np.ones(3) Out[156]: array([1., 1., 1.]) In [157]: np.o ...
- 数据分析02 /pandas基础
数据分析02 /pandas基础 目录 数据分析02 /pandas基础 1. pandas简介 2. Series 3. DataFrame 4. 总结: 1. pandas简介 numpy能够帮助 ...
- 利用Python进行数据分析(12) pandas基础: 数据合并
pandas 提供了三种主要方法可以对数据进行合并: pandas.merge()方法:数据库风格的合并: pandas.concat()方法:轴向连接,即沿着一条轴将多个对象堆叠到一起: 实例方法c ...
- 利用Python进行数据分析(9) pandas基础: 汇总统计和计算
pandas 对象拥有一些常用的数学和统计方法. 例如,sum() 方法,进行列小计: sum() 方法传入 axis=1 指定为横向汇总,即行小计: idxmax() 获取最大值对应的索 ...
- 利用Python进行数据分析(8) pandas基础: Series和DataFrame的基本操作
一.reindex() 方法:重新索引 针对 Series 重新索引指的是根据index参数重新进行排序. 如果传入的索引值在数据里不存在,则不会报错,而是添加缺失值的新行. 不想用缺失值,可以用 ...
- 利用Python进行数据分析(7) pandas基础: Series和DataFrame的简单介绍
一.pandas 是什么 pandas 是基于 NumPy 的一个 Python 数据分析包,主要目的是为了数据分析.它提供了大量高级的数据结构和对数据处理的方法. pandas 有两个主要的数据结构 ...
- [.net 面向对象编程基础] (17) 数组与集合
[.net 面向对象编程基础] (17) 数组与集合 学习了前面的C#三大特性,及接口,抽象类这些相对抽象的东西以后,是不是有点很累的感觉.具体的东西总是容易理解,因此我们在介绍前面抽象概念的时候,总 ...
- Pandas基础学习与Spark Python初探
摘要:pandas是一个强大的Python数据分析工具包,pandas的两个主要数据结构Series(一维)和DataFrame(二维)处理了金融,统计,社会中的绝大多数典型用例科学,以及许多工程领域 ...
- Pandas 基础(1) - 初识及安装 yupyter
Hello, 大家好, 昨天说了我会再更新一个关于 Pandas 基础知识的教程, 这里就是啦......Pandas 被广泛应用于数据分析领域, 是一个很好的分析工具, 也是我们后面学习 machi ...
随机推荐
- Linux系统常用升级的基础包
Linux系统常用升级的基础包 yum -y install lrzsz gcc gcc-c++ make flex autoconf automake vixie-cron libjpeg libj ...
- [LeetCode] 45. Jump Game II_ Hard tag: Dynamic Programming
Given an array of non-negative integers, you are initially positioned at the first index of the arra ...
- Solaris环境下使用snoop命令抓包
(1)报文抓取 Solaris中自带有snoop抓包工具,通过执行相应的命令抓取. 抓取目的地址为10.8.3.250的数据包,并存放到/opt/cap250的文件里 snoop -o /opt/ca ...
- 基于FPGA的序列检测器10010
最近在学习状态机,用状态机实现序列检测器10010. 思路如下: 1. S0代表当前数据0,如果检测到0就停在S0,如果检测到1就进入S1. 2. S1代表当前数据1,如果检测到0就进入S2,如果检测 ...
- locust压测rpc协议
这里主要是google的grpc接口进行压测的一个栗子. Locust是以HTTP为主要目标构建的. 但是,通过编写钩子触发器request_success和 request_failure事件的自定 ...
- Fiddler抓包【1】_介绍及界面概述
一. 主要抓包工具介绍与对比 1.Wireshark :通用抓包工具,抓取信息量庞大,需要过滤才能得到有用信息,只抓HTTP请求有点大财小用. 2.Firebug.HttpWatch等Web调试工 ...
- day1:java学习第一天之eclipse安装
选择开发语言的学习其实不用纠结,如果你说自己是做开发的,连最流行的开发语言都不会,好像说不过去,并且最流行也说明用的人多,优秀的人也会,自己要提高要多向优秀的人学习.想明白这点其实选择就好说了,再一个 ...
- Lua 判断文件类型为wav
[1]应用示例 文件类型为wav格式 -- 判断文件类型 local function isType(filename) local res = string.match(filename, &quo ...
- Microsoft SQL Server 【Windows 身份验证】和 【sa】都无法登录的解决方案
1.修改启动参数:打开[SQL Server 配置管理器(SQL Server Configuration Manager)]→右键[SQL Server(MSSQLSERVER)]属性→高级(Adv ...
- Haproxy + Keepalived +PXC 常见错误
1. Apr 21 19:15:54 pxc1 systemd[1]: mysql@bootstrap.service: main process exited, code=exited, statu ...