写出在忽略粘性与热传导性, 即设 $\mu=\mu'=\kappa=0$ 的情况, 在 Euler 坐标系下具守恒律形式的一维反应流动力学方程组. 由此求出在解的强间断线上应满足的 R.H. 条件 (见第二章 $\S 4$), 并证明越过强间断线, 函数 $Z$ 保持连续.

解答:

(1)  具守恒律形式的一维反应流动力学方程组为 $$\beex \bea \cfrac{\p \rho}{\p t}+\cfrac{\p}{\p x}(\rho u)&=0,\\ \cfrac{\p}{\p t}(\rho u)+\cfrac{\p}{\p x}(\rho u^2+p)&=0,\\ \cfrac{\p}{\p t}\sex{\rho E+\cfrac{1}{2}\rho u^2} +\cfrac{\p}{\p x}\sez{\sex{\rho E+\cfrac{1}{2}\rho u^2+p}u} &=\rho Fu,\\ \cfrac{\p}{\p t}(\rho Z)+\cfrac{\p}{\p x}(\rho Z u)&=-\bar k(\rho,p,Z)Z. \eea \eeex$$

(2)  在解的强间断线 $x=x(t)$ 上的应满足的 R.H. 条件为 $$\bee\label{4_4_4_eq} \bea \sez{\rho}\cfrac{\rd x}{\rd t}&=[\rho u],\\ [\rho u]\cfrac{\rd x}{\rd t}&=[\rho u^2+p],\\ \sez{\rho E+\cfrac{1}{2}\rho u^2}\cfrac{\rd x}{\rd t}&=\sez{\sex{\rho E+\cfrac{1}{2}\rho u^2+p}u},\\ [\rho Z]\cfrac{\rd x}{\rd t}&=[\rho Z]. \eea \eee$$

(3)  证明 $Z$ 连续. 事实上, 由 $\eqref{4_4_4_eq}_1$ 知 $$\bex m=\rho_0\sex{u_0-\cfrac{\rd x}{\rd t}} =\rho_1\sex{u_1-\cfrac{\rd x}{\rd t}}. \eex$$ 又因为强间断, 而 $m\neq 0$. 再由 $\eqref{4_4_4_eq}_1$, $\eqref{4_4_4_eq}_4$ 知 $$\bex m(Z_1-Z_0)=0\ra Z_1=Z_0.  \eex$$

[物理学与PDEs]第4章习题4 一维理想反应流体力学方程组的守恒律形式及其 R.H. 条件的更多相关文章

  1. [物理学与PDEs]第4章习题3 一维理想反应流体力学方程组的数学结构

    证明: Euler 坐标系下的一维反应流体力学方程组 (3. 10)-(3. 13) 也是一个一阶拟线性双曲型方程组. 证明: 由 (3. 10), (3. 12), (3. 13) 知 $$\bex ...

  2. [物理学与PDEs]第3章习题5 一维理想磁流体力学方程组的数学结构

    试将一维理想磁流体力学方程组 (5. 10)-(5. 16) 化为一阶拟线性对称双曲组的形式. 解答: 由 (5. 12),(5. 16) 知 $$\beex \bea 0&=\cfrac{\ ...

  3. [物理学与PDEs]第2章习题10 一维理想流体力学方程组的 Lagrange 形式

    试证明: 一维理想流体力学方程组的 Lagrange 形式 (5. 22)-(5. 24) 也可写成如下形式 $$\beex \bea \cfrac{\p \tau}{\p t}-\cfrac{\p ...

  4. [物理学与PDEs]第4章习题参考解答

    [物理学与PDEs]第4章习题1 反应力学方程组形式的化约 - 动量方程与未燃流体质量平衡方程 [物理学与PDEs]第4章习题2 反应力学方程组形式的化约 - 能量守恒方程 [物理学与PDEs]第4章 ...

  5. [物理学与PDEs]第2章习题8 一维定常粘性不可压缩流体的求解

    考察固定在 $y=0$ 与 $y=1$ 处两个平板之间的定常粘性不可压缩流体沿 $x$ 方向的流动. 设 $p=p(x)$, 且已知 $p(0) =p_1$, $p(L)=p_2$, $p_1> ...

  6. [物理学与PDEs]第2章习题7 一维不可压理想流体的求解

    设有以 $x$ 轴为轴向的等轴截面管道, 其中充满着沿 $x$ 方向流动的不可压缩的理想流体, 在每一横截面上流体的状态相同, 且 $p=p(x)$. 若已知 $p(0) =p_1$, $p(L)=p ...

  7. [物理学与PDEs]第2章习题6 有旋的 Navier-Stokes 方程组

    试证明: 由 Navier-Stokes 方程组描述的流体运动一般总是有旋的, 即若 $\rot{\bf u}={\bf 0}$, 则 Navier-Stokes 方程组 (3. 4)-(3. 5) ...

  8. [物理学与PDEs]第3章习题参考解答

    [物理学与PDEs]第3章习题1 只有一个非零分量的磁场 [物理学与PDEs]第3章习题2 仅受重力作用的定常不可压流理想流体沿沿流线的一个守恒量 [物理学与PDEs]第3章习题3电磁场的矢势在 Lo ...

  9. [物理学与PDEs]第2章习题参考解答

    [物理学与PDEs]第2章习题1 无旋时的 Euler 方程 [物理学与PDEs]第2章习题2 质量力有势时的能量方程 [物理学与PDEs]第2章习题3 Laplace 方程的 Neumann 问题 ...

随机推荐

  1. 日志学习系列(四)——NLog实例

    具体不想介绍了,新建一个解决方案 ,直接用NuGet安装就行了 具体项目代码可以在https://github.com/qiuxianhu/SimpleNLog下载

  2. 浏览器各个版本和系统(chrome/safari/edge/qq/360)

    浏览器对象: let userAgent = navigator.userAgent.toLowerCase()console.log(userAgent) Edge: mozilla/5.0 (wi ...

  3. 步步深入:MySQL架构总览->查询执行流程->SQL解析顺序(转)

    文章转自   http://www.cnblogs.com/annsshadow/p/5037667.html https://www.cnblogs.com/cuisi/p/7685893.html

  4. IDEA SpringBoot多模块项目搭建详细过程(转)

    文章转自https://blog.csdn.net/zcf980/article/details/83040029 项目源码: 链接: https://pan.baidu.com/s/1Gp9cY1Q ...

  5. localStorage sessionStorage 增强版

    1. 保留了localStorage sessionStorage的(setItem getItem removeItem clear key)api,使用上几乎差不多 2. 增强了setItem方法 ...

  6. [看图说话]在VMware Workstation 9中安装Mac OS X 10.8 Mountain Lion

    本文环境: CPU:Intel Core i7 920: OS:Windows 7: 内存:8G: 玩Hackintosh各有各的理由,不管什么理由,利用虚拟机安装Mac OS X都是一个可行的办法. ...

  7. JDK1.8源码(八)——java.util.HashSet 类

    在上一篇博客,我们介绍了 Map 集合的一种典型实现 HashMap ,在 JDK1.8 中,HashMap 是由 数组+链表+红黑树构成,相对于早期版本的 JDK HashMap 实现,新增了红黑树 ...

  8. root用户无法访问Mysql数据库问题的解决

    在使用Centos系统远程访问Mysql数据库的时候,系统提示报如下错误: Access Denied for User 'root'@'localhost' (using password: YES ...

  9. iOS 封装SDK以及封装时bundle文件的处理

    这篇教程的主要目的是解释怎么样在你的iOS工程中创建并使用一个SDK,俗称.a文件. 环境:xcode 9.0 创建一个静态库工程 打开Xcode,点击File\New\Project, 选择iOS\ ...

  10. 6-4 The present perfect

    1 Summary The present perfect is an important verb tense in English. It is used to talk about things ...