Geometric regularity criterion for NSE: the cross product of velocity and vorticity 4: $u\cdot \om$
在 [Berselli, Luigi C.; Córdoba, Diego. On the regularity of the solutions to the 3D Navier-Stokes equations: a remark on the role of the helicity. C. R. Math. Acad. Sci. Paris 347 (2009), no. 11-12, 613--618] 中, 作者证明了如果
$$|u(x+y,t)\cdot \om(x,t)|\leq c_1|y||u(x+y,t)||\om(x,t),\ |y|\leq \del,$$
则解光滑.
Geometric regularity criterion for NSE: the cross product of velocity and vorticity 4: $u\cdot \om$的更多相关文章
- Geometric regularity criterion for NSE: the cross product of velocity and vorticity 1: $u\times \om$
在 [Chae, Dongho. On the regularity conditions of suitable weak solutions of the 3D Navier-Stokes equ ...
- Geometric regularity criterion for NSE: the cross product of velocity and vorticity 2: $u\times \om\cdot \n\times \om$
在 [Lee, Jihoon. Notes on the geometric regularity criterion of 3D Navier-Stokes system. J. Math. Phy ...
- Geometric regularity criterion for NSE: the cross product of velocity and vorticity 3: $u\times \f{\om}{|\om|}\cdot \f{\vLm^\be u}{|\vLm^\be u|}$
在 [Chae, Dongho; Lee, Jihoon. On the geometric regularity conditions for the 3D Navier-Stokes equati ...
- Regularity criteria for NSE 5: $u_3,\om_3$
In [Zhang, Zujin. Serrin-type regularity criterion for the Navier-Stokes equations involving one vel ...
- Cross Product
Cross Product These are two vectors: They can be multiplied using the "Cross Product" (als ...
- Regularity criteria for NSE 6: $u_3,\p_3u_1,\p_3u_2$
In [Zujin Zhang, Jinlu Li, Zheng-an Yao, A remark on the global regularity criterion for the 3D Navi ...
- A fine property of the convective terms of axisymmetric MHD system, and a regularity criterion in terms of $\om^\tt$
In [Zhang, Zujin; Yao, Zheng-an. 3D axisymmetric MHD system with regularity in the swirl component o ...
- Regularity criteria for NSE 4: $\p_3u$
In [Zhang, Zujin. An improved regularity criterion for the Navier–Stokes equations in terms of one d ...
- 向量 dot cross product 点积叉积 几何意义
向量 dot cross product 点积叉积 几何意义 有向量 a b 点积 a * b = |a| * |b| * cosθ 几何意义: 1. a * b == 0,则 a ⊥ b 2. a ...
随机推荐
- Mockito单元测试
Mockito简介 Mockito是一个单元测试框架,需要Junit的支持.在我们的项目中,都存在相当多的依赖关系,当我们在测试某一个业务相关的接口或则方法时,绝大多数时候是没有办法或则很难去添加所有 ...
- ABAP 7.53 中的ABAP SQL(原Open SQL)新特性
S/4 HANA 1809 已经在上月发布,随之而来的是ABAP 7.53. 本文是更新文档中ABAP SQL的部分的翻译. 本次更新的内容较多,主要内容包括:Open SQL更名为ABAP SQL: ...
- C#基础知识之泛型
泛型在c#中有很重要的位置,对于写出高可读性,高性能的代码有着关键的作用. 其实官方文档说明的很详细,我这边算是做个记录吧 一.什么是泛型? 泛型是 2.0 版 C# 语言和公共语言运行库 (CLR) ...
- Kubernetes - kubectl proxy
最近在玩flink部署在k8s上,但是k8s以前没玩过,参照前几天写的文章可部署一个简单的k8shttps://www.cnblogs.com/felixzh/p/9726244.html 在参照fl ...
- Python距离放弃拉近的day03
新的一天,依旧是内容补充,补充了数学没有的运算符,in和not in,就是判断in前面的东西是不是在后面的数据中,然后新课讲了平常最常用的字符串的方法,引号的里面全部都是字符串,在其中就会又如何判断这 ...
- 基于SpringMVC拦截器和注解实现controller中访问权限控制
SpringMVC的拦截器HandlerInterceptorAdapter对应提供了三个preHandle,postHandle,afterCompletion方法. preHandle在业务处理器 ...
- Django view(视图)
在Django MTV模式中,View视图负责业务逻辑部分,路由系统接收到HTTP请求,并将任务分配给相应的视图函数,由视图函数来负责响应这个请求.无论视图本身包含什么逻辑,都要返回响应. 在这里HT ...
- TensorRT&Sample&Python[introductory_parser_samples]
本文是基于TensorRT 5.0.2基础上,关于其内部的introductory_parser_samples例子的分析和介绍. 1 引言 假设当前路径为: TensorRT-5.0.2.6/sam ...
- jenkins的安装部署
jenkins安装 参考连接: https://wiki.jenkins.io/display/JENKINS/Installing+Jenkins+on+Red+Hat+distributions ...
- 使用IDEA2017在Windows下编程并测试Hadoop2.7+Spark2.2+Azkaban
1. 下载好IDEA HADOOP SPARK 首先,配置IDEA, 在插件管理中使用IDEA在线库安装scala插件, 在在线库直接搜索即可; 其次,配置Maven选项, 将Maven添加到IDEA ...