Solving the Problem of Overfitting
The Problem of Overfitting
Cost Function
Regularized Linear Regression
Note: [8:43 - It is said that X is non-invertible if m ≤ n. The correct statement should be that X is non-invertible if m < n, and may be non-invertible if m = n.
We can apply regularization to both linear regression and logistic regression. We will approach linear regression first.
Regularized Logistic Regression
We can regularize logistic regression in a similar way that we regularize linear regression. As a result, we can avoid overfitting. The following image shows how the regularized function, displayed by the pink line, is less likely to overfit than the non-regularized function represented by the blue line:
Solving the Problem of Overfitting的更多相关文章
- machine learning(13) -- solving the problem of overfitting:regularization
solving the problem of overfitting:regularization 发生的在linear regression上面的overfitting问题 发生在logistic ...
- 机器学习(四)正则化与过拟合问题 Regularization / The Problem of Overfitting
文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang 的个人 ...
- The first step in solving any problem is recognizing there is one.
The first step in solving any problem is recognizing there is one.解决问题的第一步是要承认确实存在问题.
- 吴恩达机器学习笔记19-过拟合的问题(The Problem of Overfitting)
到现在为止,我们已经学习了几种不同的学习算法,包括线性回归和逻辑回归,它们能够有效地解决许多问题,但是当将它们应用到某些特定的机器学习应用时,会遇到过拟合(over-fitting)的问题,可能会导致 ...
- 1763 An Essay towards solving a Problem in the Doctrine of Chances
https://en.wikipedia.org/wiki/An_Essay_towards_solving_a_Problem_in_the_Doctrine_of_Chances
- Ng第七课:正则化与过拟合问题 Regularization/The Problem of Overfitting
7.1 过拟合的问题 7.2 代价函数 7.3 正则化线性回归 7.4 正则化的逻辑回归模型 7.1 过拟合的问题 如果我们有非常多的特征,我们通过学习得到的假设预测可能能够非常好地适应训练 ...
- Machine Learning - 第3周(Logistic Regression、Regularization)
Logistic regression is a method for classifying data into discrete outcomes. For example, we might u ...
- 《Machine Learning》系列学习笔记之第三周
第三周 第一部分 Classification and Representation Classification 为了尝试分类,一种方法是使用线性回归,并将大于0.5的所有预测映射为1,所有小于0. ...
- Andrew Ng机器学习课程笔记--week3(逻辑回归&正则化参数)
Logistic Regression 一.内容概要 Classification and Representation Classification Hypothesis Representatio ...
随机推荐
- oracle跨数据库跨用户訪问注意事项
java代码中不同意出现oracle的username.数据链路名. 跨用户.跨数据库的訪问必须在oracle中建同义词或视图来实现.在java代码中仅仅需当做当前用户下的对象处理.
- BZOJ2882
传送门:BZOJ2882(权限题) 最小表示法的模板. 传送门:周神论文 代码上的小细节见下. #include <cstdio> #include <cstdlib> #in ...
- elasticsearch transport 请求发送和处理
前一篇分析对nettytransport的启动及连接,本篇主要分析transport请求的发送和处理过程.cluster中各个节点之间需要相互发送很多信息,如master检测其它节点是否存在,node ...
- 16.REPL 命令
转自:http://www.runoob.com/nodejs/nodejs-tutorial.html ctrl + c - 退出当前终端. ctrl + c 按下两次 - 退出 Node REPL ...
- Android自定义系统分享面板
在Android中实现分享有一种比较方便的方式,调用系统的分享面板来分享我们的应用.最基本的实现如下: public Intent getShareIntent(){ Intent intent = ...
- mysql-5.7.19-winx64服务无法启动解决方案
解压mysql压缩包时没有data文件夹,不要手动创建,在cmd下直接运行命令: mysqld –initialize-insecure,data文件夹会自动生成,注意单词千万不要拼错,不要写成–in ...
- 1.1 Introduction中 Guarantees官网剖析(博主推荐)
不多说,直接上干货! 一切来源于官网 http://kafka.apache.org/documentation/ Guarantees Kafka的保证(Guarantees) At a high- ...
- Flume Sink Processors官网剖析(博主推荐)
不多说,直接上干货! Flume Sources官网剖析(博主推荐) Flume Channels官网剖析(博主推荐) Flume Channel Selectors官网剖析(博主推荐) Flume ...
- 1.7 Python基础知识 - 模块初识
在Python中有很多模块,模块对应的就是python源代码文件.模块中有Python程序自己附带的标准模块,还有很多其他人共享的第三方模块.模块中可以定义变量.函数和类.而多个功能类似的模块可以组织 ...
- vue 星星评分组件
显示评分和打分组件,可现实半颗星星效果 效果图: 参数名 类型 说明 score Number 分数 ,默认0,保留一位小数 disabled Boolean 是否只读,默认false,鼠标点击可以打 ...