Solving the Problem of Overfitting
The Problem of Overfitting
Cost Function
Regularized Linear Regression
Note: [8:43 - It is said that X is non-invertible if m ≤ n. The correct statement should be that X is non-invertible if m < n, and may be non-invertible if m = n.
We can apply regularization to both linear regression and logistic regression. We will approach linear regression first.
Regularized Logistic Regression
We can regularize logistic regression in a similar way that we regularize linear regression. As a result, we can avoid overfitting. The following image shows how the regularized function, displayed by the pink line, is less likely to overfit than the non-regularized function represented by the blue line:
Solving the Problem of Overfitting的更多相关文章
- machine learning(13) -- solving the problem of overfitting:regularization
solving the problem of overfitting:regularization 发生的在linear regression上面的overfitting问题 发生在logistic ...
- 机器学习(四)正则化与过拟合问题 Regularization / The Problem of Overfitting
文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang 的个人 ...
- The first step in solving any problem is recognizing there is one.
The first step in solving any problem is recognizing there is one.解决问题的第一步是要承认确实存在问题.
- 吴恩达机器学习笔记19-过拟合的问题(The Problem of Overfitting)
到现在为止,我们已经学习了几种不同的学习算法,包括线性回归和逻辑回归,它们能够有效地解决许多问题,但是当将它们应用到某些特定的机器学习应用时,会遇到过拟合(over-fitting)的问题,可能会导致 ...
- 1763 An Essay towards solving a Problem in the Doctrine of Chances
https://en.wikipedia.org/wiki/An_Essay_towards_solving_a_Problem_in_the_Doctrine_of_Chances
- Ng第七课:正则化与过拟合问题 Regularization/The Problem of Overfitting
7.1 过拟合的问题 7.2 代价函数 7.3 正则化线性回归 7.4 正则化的逻辑回归模型 7.1 过拟合的问题 如果我们有非常多的特征,我们通过学习得到的假设预测可能能够非常好地适应训练 ...
- Machine Learning - 第3周(Logistic Regression、Regularization)
Logistic regression is a method for classifying data into discrete outcomes. For example, we might u ...
- 《Machine Learning》系列学习笔记之第三周
第三周 第一部分 Classification and Representation Classification 为了尝试分类,一种方法是使用线性回归,并将大于0.5的所有预测映射为1,所有小于0. ...
- Andrew Ng机器学习课程笔记--week3(逻辑回归&正则化参数)
Logistic Regression 一.内容概要 Classification and Representation Classification Hypothesis Representatio ...
随机推荐
- logname---显示用户名称
logname命令用来显示用户名称.
- FZU 1921 栀子花开
栀子花开 Time Limit: 1000ms Memory Limit: 32768KB This problem will be judged on FZU. Original ID: 19216 ...
- WPF MVVM架构 EF、WCF、IOC 设计示例经典
概要 该演示项目利用WPF应用程序构建的MVVM架构示例, 运用了Unity容器接口注入, MVVM的经典设计, 后台利用的EF+WCF. 后台实现: 从数据库生成的emdx 结合上下文进行数据交互, ...
- RecyclerView下拉刷新和载入很多其它
之前一直写的是ListVIew下拉刷新,可是好多朋友都说要RecycleView的下拉刷新和滑动载入.事实上,这个原理都是几乎相同.抽出时间,我就写了下RecycleView的下拉刷新和滑动载入很多其 ...
- holder.js如何使用
holder.js的使用 一.总结 一句话总结:使用:holder.js后面接图片宽高 <img src="holder.js/300x200" /> 1.holder ...
- ::的类名前有个 & ,什么意思?
转载自 http://www.imooc.com/qadetail/93985 MazePerson &MazePerson::setPersonPosition(int coordinat ...
- COGS——T 1786. 韩信点兵
http://www.cogs.pro/cogs/problem/problem.php?pid=1786 ★★★ 输入文件:HanXin.in 输出文件:HanXin.out 简单对比时 ...
- Spring入门--控制反转(IOC)与依赖注入(DI)
1.控制反转(Inversion of Control)与依赖注入(Dependency Injection) 控制反转即IoC (Inversion of Control).它把传统上由程序 ...
- 跨域请求发送不了cookie问题: AJAX跨域请求JS配置和服务器端配置
1.ajax是同步方式 $.ajax({ type: "post", url:url, async:false, data:datatosend, dataType:"j ...
- h5背景
1.背景属性复习: background-image background-color background-repeat background-position background-attachm ...