The Problem of Overfitting

Cost Function

Regularized Linear Regression

Note: [8:43 - It is said that X is non-invertible if m ≤ n. The correct statement should be that X is non-invertible if m < n, and may be non-invertible if m = n.

We can apply regularization to both linear regression and logistic regression. We will approach linear regression first.

Regularized Logistic Regression

We can regularize logistic regression in a similar way that we regularize linear regression. As a result, we can avoid overfitting. The following image shows how the regularized function, displayed by the pink line, is less likely to overfit than the non-regularized function represented by the blue line:

Solving the Problem of Overfitting的更多相关文章

  1. machine learning(13) -- solving the problem of overfitting:regularization

    solving the problem of overfitting:regularization 发生的在linear regression上面的overfitting问题 发生在logistic ...

  2. 机器学习(四)正则化与过拟合问题 Regularization / The Problem of Overfitting

    文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang 的个人 ...

  3. The first step in solving any problem is recognizing there is one.

    The first step in solving any problem is recognizing there is one.解决问题的第一步是要承认确实存在问题.

  4. 吴恩达机器学习笔记19-过拟合的问题(The Problem of Overfitting)

    到现在为止,我们已经学习了几种不同的学习算法,包括线性回归和逻辑回归,它们能够有效地解决许多问题,但是当将它们应用到某些特定的机器学习应用时,会遇到过拟合(over-fitting)的问题,可能会导致 ...

  5. 1763 An Essay towards solving a Problem in the Doctrine of Chances

    https://en.wikipedia.org/wiki/An_Essay_towards_solving_a_Problem_in_the_Doctrine_of_Chances

  6. Ng第七课:正则化与过拟合问题 Regularization/The Problem of Overfitting

    7.1  过拟合的问题 7.2  代价函数 7.3  正则化线性回归 7.4  正则化的逻辑回归模型 7.1  过拟合的问题 如果我们有非常多的特征,我们通过学习得到的假设预测可能能够非常好地适应训练 ...

  7. Machine Learning - 第3周(Logistic Regression、Regularization)

    Logistic regression is a method for classifying data into discrete outcomes. For example, we might u ...

  8. 《Machine Learning》系列学习笔记之第三周

    第三周 第一部分 Classification and Representation Classification 为了尝试分类,一种方法是使用线性回归,并将大于0.5的所有预测映射为1,所有小于0. ...

  9. Andrew Ng机器学习课程笔记--week3(逻辑回归&正则化参数)

    Logistic Regression 一.内容概要 Classification and Representation Classification Hypothesis Representatio ...

随机推荐

  1. logname---显示用户名称

    logname命令用来显示用户名称.

  2. FZU 1921 栀子花开

    栀子花开 Time Limit: 1000ms Memory Limit: 32768KB This problem will be judged on FZU. Original ID: 19216 ...

  3. WPF MVVM架构 EF、WCF、IOC 设计示例经典

    概要 该演示项目利用WPF应用程序构建的MVVM架构示例, 运用了Unity容器接口注入, MVVM的经典设计, 后台利用的EF+WCF. 后台实现: 从数据库生成的emdx 结合上下文进行数据交互, ...

  4. RecyclerView下拉刷新和载入很多其它

    之前一直写的是ListVIew下拉刷新,可是好多朋友都说要RecycleView的下拉刷新和滑动载入.事实上,这个原理都是几乎相同.抽出时间,我就写了下RecycleView的下拉刷新和滑动载入很多其 ...

  5. holder.js如何使用

    holder.js的使用 一.总结 一句话总结:使用:holder.js后面接图片宽高 <img src="holder.js/300x200" /> 1.holder ...

  6. ::的类名前有个 & ,什么意思?

    转载自  http://www.imooc.com/qadetail/93985 MazePerson &MazePerson::setPersonPosition(int coordinat ...

  7. COGS——T 1786. 韩信点兵

    http://www.cogs.pro/cogs/problem/problem.php?pid=1786 ★★★   输入文件:HanXin.in   输出文件:HanXin.out   简单对比时 ...

  8. Spring入门--控制反转(IOC)与依赖注入(DI)

        1.控制反转(Inversion of Control)与依赖注入(Dependency Injection) 控制反转即IoC (Inversion of Control).它把传统上由程序 ...

  9. 跨域请求发送不了cookie问题: AJAX跨域请求JS配置和服务器端配置

    1.ajax是同步方式 $.ajax({ type: "post", url:url, async:false, data:datatosend, dataType:"j ...

  10. h5背景

    1.背景属性复习: background-image background-color background-repeat background-position background-attachm ...