【bzoj1025】【SCOI2009】【游戏】【dp】
Description
windy学会了一种游戏。对于1到N这N个数字,都有唯一且不同的1到N的数字与之相应。最開始windy把数字按顺序1,2。3。……,N写一排在纸上。
然后再在这一排以下写上它们相应的数字。然后又在新的一排以下写上它们相应的数字。如此重复,直到序列再次变为1。2,3,……。N。
如: 1 2 3 4 5 6 相应的关系为 1->2 2->3 3->1 4->5 5->4 6->6 windy的操作例如以下
1 2 3 4 5 6 2 3 1 5 4 6 3 1 2 4 5 6 1 2 3 5 4 6 2 3 1 4 5 6 3 1 2 5 4 6 1 2 3 4 5 6 这时,我们就有若干排1到N的排列,上例中有7排。如今windy想知道,对于全部可能的相应关系。有多少种可能的排数。
Input
包括一个整数,N。
Output
包括一个整数。可能的排数。
Sample Input
3
【输入例子二】
10
Sample Output
3
【输出例子二】
16
HINT
【数据规模和约定】
100%的数据。满足 1 <= N <= 1000 。
题解:首先能够发现这个变换是由几个子集合的轮换构成的。然后最后答案就是这几个轮换长度的最小公倍数+1
然后轮换长度是从1-n的。那问题就变成了把n分成几个部分,然后这几个部分的最小公倍数的种类数。
最小公倍数肯定就是一坨素因子加加乘乘。
那么算出1-n有多少素因子。设f[i][j]表示用前i个素因子容量为j。
直接背包好了。。
#include<iostream>
#include<cstdio>
using namespace std;
int n,t,p[1001];
long long ans,f[1001][1001];
bool ff[1001];
void get()
{
for(int i=2;i<=1000;i++)
{
if(!ff[i])p[++t]=i;
for(int j=1;j<=t&&i*p[j]<=1000;j++){ff[i*p[j]]=true;if(i%p[j]==0 )break; }
}
}
void dp()
{
f[0][0]=1;
for(int i=1;i<=t;i++)
{
for(int j=0;j<=n;j++)f[i][j]=f[i-1][j];
for(int j=p[i];j<=n;j*=p[i])
for(int k=0;k<=n-j;k++)
f[i][k+j]+=f[i-1][k];
}
}
int main()
{
cin>>n;
get();
dp();
for(int i=0;i<=n;i++)ans+=f[t][i];
cout<<ans<<endl;
}
【bzoj1025】【SCOI2009】【游戏】【dp】的更多相关文章
- [BZOJ1025][SCOI2009]游戏 DP+置换群
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1025 题目中的排数就是多少次回到原来的序列.很显然对于题目所描述的任意一种对应法则,其中一 ...
- bzoj1025: [SCOI2009]游戏(DP)
题目大意:将长度为n的排列作为1,2,3,...,n的置换,有可能置换x次之后,序列又回到了1,2,3,...,n,求所有可能的x的个数. 看见这种一脸懵逼的题第一要务当然是简化题意...我们可以发现 ...
- bzoj千题计划116:bzoj1025: [SCOI2009]游戏
http://www.lydsy.com/JudgeOnline/problem.php?id=1025 题目转化: 将n分为任意段,设每段的长度分别为x1,x2,…… 求lcm(xi)的个数 有一个 ...
- BZOJ1025 [SCOI2009]游戏 【置换群 + 背包dp】
题目链接 BZOJ1025 题解 题意就是问一个\(1....n\)的排列在同一个置换不断重复下回到\(1...n\)可能需要的次数的个数 和置换群也没太大关系 我们只需知道同一个置换不断重复,实际上 ...
- 2018.09.02 bzoj1025: [SCOI2009]游戏(计数dp+线筛预处理)
传送门 要将所有置换变成一个轮换,显然轮换的周期是所有置换长度的最小公倍数. 于是我们只需要求长度不超过n,且长度最小公倍数为t的不同置换数. 而我们知道,lcm只跟所有素数的最高位有关. 因此lcm ...
- bzoj1025 [SCOI2009]游戏——因数DP
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1025 这篇博客写得真好呢:https://www.cnblogs.com/phile/p/4 ...
- [BZOJ1025] [SCOI2009]游戏 解题报告
Description windy学会了一种游戏.对于1到N这N个数字,都有唯一且不同的1到N的数字与之对应.最开始windy把数字按顺序1,2,3,……,N写一排在纸上.然后再在这一排下面写上它们对 ...
- BZOJ1025: [SCOI2009]游戏
Description windy学会了一种游戏.对于1到N这N个数字,都有唯一且不同的1到N的数字与之对应.最开始windy把数字按顺序1,2,3,……,N写一排在纸上.然后再在这一排下面写上它们对 ...
- bzoj1025: [SCOI2009] 游戏 6
DP. 每种排法的长度对应所有循环节长度的最小公倍数. 所以排法总数为和为n的几个数的最小公倍数的总数. #include<cstdio> #include<algorithm> ...
- [bzoj1025][SCOI2009]游戏 (分组背包)
Description windy学会了一种游戏.对于1到N这N个数字,都有唯一 且不同的1到N的数字与之对应.最开始windy把数字按顺序1,2,3,……,N写一排在纸上.然后再在这一排下面写上它们 ...
随机推荐
- ie8 不支持 position:fixed 的简单解决办法
今天发现使用 position:fixed 的页面在firefox下没有问题,在IE8下却不能正常显示,在网上找了找,有不少相关文章,但是不是不起作用就是太复杂,后来终于发现一个简单的解决办法,就是在 ...
- centos vi和vim用法
所有的 Unix Like 系统都会内建 vi 文书编辑器,其他的文书编辑器则不一定会存在. 但是目前我们使用比较多的是 vim 编辑器. vim 具有程序编辑的能力,可以主动的以字体颜色辨别语法的正 ...
- 浅谈JavaScript中的cookie
什么是cookie?简单来说,cookie就是网站服务器存放在我们计算机上的一小段(一般大小不超过4KB)用来识别和记录用户的个人信息的文本.HTTP协议是一种没有“状态”的传输协议,也就是说,服务器 ...
- mysql行列转置
--创建行转列表及插入数据 create table tb_RowConvertToColumn ( username nvarchar(100) null, course nvarchar(100) ...
- Md2All,让公众号完美显示Latex数学公式
当公众号遇上Latex 大家都知到,公众号连代码块都不支持,更不要说功能强大的Latex公式了.那在Md2All之前,如果想在公众号上显示Latex公式应该怎么办呢? 最通常的做法就是在某个支持Lat ...
- Ubuntu安装中文语言包
使用Ubuntu 默认的界面感觉不习惯,于是安装KDE界面. 1.安装kde 使用命令行: sudo apt-get install kubuntu-desktop 安装后发现不能使用中文, 在 se ...
- 【技术累积】【点】【Java】【12】几种常见编码(持续更新)
问题描述 有这么一段代码: String question = new String(record.getQuestion().getBytes("iso-8859-1"), &q ...
- DB120连接TTL--OpenWRT
DB120 TTL线连接 1.解压文件安装USB TTL PL2303HX 驱动 2.插上usb转ttl设备 3.串口调试 4.连接ttl线到db120 5.The END
- 编程领域中的 "transparent" 和 "opaque"
引言 在学习计算机的过程中,经常会接触到 “透明” 和 “非透明” 的概念. 刚开始理解 “透明” 这个概念的时候,认为 “透明” 就是程序员可以看见其中的构造,但是老师却说透明是程序员意识不到其中的 ...
- SQLite 的使用
private void button1_Click(object sender, EventArgs e) { //查询数据库内容并绑定 string sql= "select* from ...