LINUX - getopts
getopts optionString opt;
optionString :所有参数组成的-参数串;
opt:从optionString 每次取的参数值;
当optionString用【:】开头,getopts会区分参数无效错误和参数丢失错误。
参数无效时, opt会被设成【?】
参数丢失时,opt会被设成【:】
LINUX - getopts的更多相关文章
- shell getopts
1, 分类: LINUX getopts命令内置于shell中,可以获取由单个字符所指定的有效命令行参数,单个字符有一个‘ - ’号或‘ + ’号. 简单的说,比如运行命令: iptables -t ...
- Linux 驱动开发
linux驱动开发总结(一) 基础性总结 1, linux驱动一般分为3大类: * 字符设备 * 块设备 * 网络设备 2, 开发环境构建: * 交叉工具链构建 * NFS和tftp服务器安装 3, ...
- 自学Linux Shell13.2-选项处理(主要getopt、getopts命令)
点击返回 自学Linux命令行与Shell脚本之路 Bash shell提供了一些不同的方法来从用户处获得数据,包括以下3中方法: 命令行参数(添加在名利后面的数据) 命令行选项(可修改命令行为的单个 ...
- linux命令getopts
一.getopts 简介 由于shell命令行的灵活性,自己编写代码判断时,复杂度会比较高.使用内部命令 getopts 可以很方便地处理命令行参数.一般格式为: getopts options va ...
- Linux getopt/getopts解析命令行参数教程
一.说明 shell中获取参数可以直接使用$1.$2等形式来获取,但这种方式有明显的限制:每个参数的位置是固定的.比如如果在设计上$1是ip地址$2是端口,那在执行时就必须第一个参数是ip第二个参数是 ...
- Linux命令参数处理 shell脚本函数getopts
getopts 命令 用途 处理命令行参数,并校验有效选项. 语法 getopts 选项字符串 名称 [ 参数 ...] 描述 getopts 的设计目标是在循环中运行,每次执行循环,getopts ...
- linux之getopts
在编写shell脚本中,经常要处理一些输入参数,在使用过程中发现getopts更加方便,能够很好的处理用户输入的参数和参数值. getopts用于处理用户输入参数,举例说明使用方法: while ge ...
- Linux命令随笔
Linux命令总结 man ==命令帮助; help ==命令的帮助(bash的内置命令); ls ==list,查看目录列表; -ld:查看目录权限; -l:(long)长格式显示属性; -F:给不 ...
- 最全的linux命令大全,shell运维手册
shell实例手册 0 说明{ 手册制作: 雪松} 1 文件{ ls -rtl # 按时间倒叙列出所有目录和文件 ll -rt touch file ...
随机推荐
- 对于Linux内核tty设备的一点理解
http://blog.chinaunix.net/uid-7828352-id-3233064.html
- cat<<EOF获取标准输入到文件中
原文:http://blog.csdn.net/apache0554/article/details/45508631 ---------------------------------------- ...
- 【转】Maven的安装与使用(ubuntu)
原文: http://www.cnblogs.com/yunwuzhan/p/5900311.html https://maven.apache.org/guides/getting-started/ ...
- Python常用模块【sys】
sys.argv 参数 「argv」是「argument variable」参数变量的简写形式.一般在命令行调用的时候由系统传递给程序.这个变量其实是一个List列表,argv[0] 一般是“被 ...
- android Service not registered
Caused by: java.lang.IllegalArgumentException: Service not registered:com.broadcom.bt.app.settings.S ...
- EOJ 1641/UVa The SetStack Computer
Background from Wikipedia: “Set theory is a branch of mathematics created principally by the German ...
- Coursera Algorithms week1 算法分析 练习测验: Egg drop 扔鸡蛋问题
题目原文: Suppose that you have an n-story building (with floors 1 through n) and plenty of eggs. An egg ...
- [BZOJ2017][Usaco2009 Nov]硬币游戏(要复习系列)
又是DP? 好吧,或者说是博弈论,但是我不会啊. 先搞个O(n^3)的记忆化搜索,然后瞎搞好像发现两个状态几乎一样? 竟然过了样例,然后竟然A了... #include<iostream> ...
- B - Lucky Division
Problem description Petya loves lucky numbers. Everybody knows that lucky numbers are positive integ ...
- Coursera公开课-Machine_learing:编程作业6
Support Vector Machines I have some issues to state. First, there were some bugs in original code wh ...